BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.5
Formeln aus der elementaren Geometrie anwenden, erstellen und im Kontext interpretieren und begründen. Es werden die Inhalte der elementaren Geometrie vorausgesetzt: Ähnlichkeit, Satz des Pythagoras, Dreiecke, Vierecke, Kreis, Würfel, Quader, gerade Prismen, gerade Pyramiden, Drehzylinder, Drehkegel, Kugel; Längen, Flächen- und Rauminhalte in anwendungsbezogenen Problemen.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4020
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_412
Teil a
Aus nostalgischen Gründen werden in einem kleinen Weingut Trauben der Sorte Welschriesling mit einer renovierten Handpresse gepresst. Der zylinderförmige Korb, in dem die Weintrauben gepresst werden, hat dabei die folgenden Abmessungen: Höhe h = 80 cm, Innenradius r = 42 cm.
1. Teilaufgabe - Bearbeitungszeit 11:20
Überprüfen Sie nachweislich mithilfe der Volumensformel des Drehzylinders, ob die nachstehenden Aussagen jeweils richtig sind.
[2 Punkte]
- Aussage 1: „Wäre die zylinderförmige Presse 1,6 m hoch (bei gleichem Durchmesser), so würde sie das doppelte Volumen fassen.“
- Aussage 2: „Hätte die zylinderförmige Presse einen Innenradius von 84 cm (bei gleicher Höhe), so würde sie das doppelte Volumen fassen.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Der Korb ist zu 95 % mit Trauben gefüllt. Aus diesen Trauben werden 350 Liter Traubenmost gepresst.
Berechnen Sie den prozentuellen Anteil des Traubenmosts am ursprünglichen Volumen der Trauben.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4130
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2018 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kugelstoßen
Teil d
Kugelstoßen ist eine Disziplin bei den Olympischen Sommerspielen. Eine Metallkugel muss so weit wie möglich aus einem Kreis in einen vorgegebenen Aufschlagbereich gestoßen werden. Für die bei den Männern verwendeten Kugeln gelten folgende Vorgaben:
- Die Masse beträgt 7 257 g.
- Der Durchmesser der Kugel liegt zwischen 11 cm und 13 cm.
Eine Messing-Eisen-Legierung hat eine Dichte von 8,2 g/cm³.
Die Masse m ist das Produkt aus Volumen V und Dichte ϱ, also m = V ∙ ϱ .
1. Teilaufgabe - Bearbeitungszeit 5:40
Überprüfen Sie nachweislich, ob man aus dieser Messing-Eisen-Legierung eine Kugel herstellen kann, die diese Vorgaben erfüllt.
[1 Punkt]
Aufgabe 4188
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flüssigkeitsbehälter - Aufgabe A_063
Teil a
Das nachstehend abgebildete zylindrische Gefäß mit der Höhe h = 16 dm fasst bei Befüllung bis 10 cm unter den oberen Rand 1 200 L.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Durchmesser d des Gefäßes.
[1 Punkt]
Aufgabe 4189
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flüssigkeitsbehälter - Aufgabe A_063
Teil b
Ein Raum hat eine quadratische Grundfläche mit der Seitenlänge a. Es werden darin 4 zylindrische Gefäße mit gleichem Außendurchmesser gelagert (siehe nachstehende Abbildung, Ansicht von oben).
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung des Inhalts A der farbig markierten Fläche aus der Seitenlänge a.
[1 Punkt]
A =
Aufgabe 4070
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Altenpflege - Aufgabe A_262
Teil b
Der Aufzug eines Pflegeheims hat eine rechteckige Grundfläche mit einer Länge von 4 m und einer Breite von 2,8 m. Ein Pflegebett fährt auf beweglichen Rollen und hat die Augenmaße 2,4 m × 1,1 m (siehe nachstehende nicht maßstabsgetreue Abbildung).
Abbildung: Aufzug-Innenraum von oben gesehen
1. Teilaufgabe - Bearbeitungszeit 5:40
Überprüfen Sie nachweislich, ob der Aufzug breit genug ist, damit das Bett – wie oben skizziert – um 180° gedreht werden kann.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4206
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eiffelturm - Aufgabe A_287
Teil a
Die Metallkonstruktion des Eiffelturms hat eine Masse von 7 300 Tonnen, das sind \(7,3 \cdot {10^x}\) Kilogramm.
1. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie den fehlenden Exponenten.
[1 Punkt]
Die Masse m ist das Produkt aus Dichte ϱ und Volumen V, also \(m = \rho \cdot V\). Das Metall des Eiffelturms hat eine Dichte von 7 800 kg/m3. Die Grundfläche des Eiffelturms ist quadratisch und hat eine Seitenlange von 125 m. Stellen Sie sich vor, die Metallkonstruktion des Eiffelturms wurde eingeschmolzen und zu einem Quader mit der gleichen Grundfläche gegossen.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Höhe dieses Quaders in Zentimetern.
[2 Punkte]
Aufgabe 4093
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abrissbirnen - Aufgabe B_012
Abrissbirnen sind kugel- oder birnenförmige Werkzeuge zum Abreisen von Gebäuden.
Teil a
Eine Abrissbirne hat die Form einer Kugel mit dem Durchmesser d. Die Masse m und die Dichte ϱ der Kugel sind bekannt. Die Masse ist das Produkt von Volumen und Dichte.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung des Durchmessers d aus m und ϱ .
d= ……
[1 Punkt]
Eine einfache Regel besagt: „Um die Masse einer Kugel zu verdoppeln, ist ihr Durchmesser um rund ein Viertel zu vergrößern.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie allgemein, dass diese Regel richtig ist.
[1 Punkt]
Aufgabe 4176
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Pauliberg - Aufgabe A_067
Der Pauliberg ist Österreichs jüngster erloschener Vulkan und ein beliebtes Ausflugsziel im Burgenland.
Teil a
Beim Pauliberg befindet sich eine Fundstätte von großen Brocken aus vulkanischem Gestein. Für die nachfolgenden Aufgaben wird vereinfacht von kugelförmigen Brocken ausgegangen. Ein bestimmter Brocken hat eine Masse von 4,5 t. Die Dichte des Gesteins beträgt 3 000 kg/m3. Die Masse m ist das Produkt aus Volumen V und Dichte \(\rho\) also: \(m = V \cdot \rho \)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Durchmesser dieses Brockens.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Von zwei solchen Brocken mit gleicher Dichte und verschiedener Masse kennt man jeweils den Durchmesser:
Brocken 1 | Brocken 2 | |
Masse in kg | m1 | m2 |
Durchmesser | 1 m | 1 dm |
Kreuzen Sie die zutreffende Aussage an.
- Aussage 1: m1 ist das Zehnfache von m2.
- Aussage 2: m1 und m2 stehen im Verhältnis 10 000 : 1.
- Aussage 3: \({m_2} = 1000 \cdot \pi \cdot {m_1}\)
- Aussage 4: m1 und m2 stehen im Verhältnis 100 : 1.
- Aussage 5: \({m_1} = 1000 \cdot {m_2}\)
[1 aus 5] [1 Punkt]
Aufgabe 4273
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Darts - Aufgabe A_302
Teil a
Darts ist ein Spiel, bei dem Pfeile auf eine kreisförmige Dartscheibe geworfen werden (siehe nachstehende Abbildung).
In der obigen Abbildung sind die Durchmesser zweier Kreise gekennzeichnet, die einen gemeinsamen Mittelpunkt haben. Der innere Kreis hat den Durchmesser d = 34 cm und der äußere Kreis den Durchmesser D = 45 cm.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viel Prozent die Fläche des inneren Kreises bezogen auf jene des äußeren Kreises ausmacht.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4300
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2016 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Section-Control - Aufgabe_A226
Section-Control bezeichnet ein System zur Überwachung der Einhaltung von Tempolimits im Straßenverkehr. Dabei wird nicht die Geschwindigkeit an einem bestimmten Punkt gemessen, sondern die mittlere Geschwindigkeit über eine längere Strecke ermittelt.
Teil c
Ein Fahrzeug fährt durch einen Bereich, der durch eine Section-Control überwacht wird. Seine Geschwindigkeit nimmt auf diesem Streckenabschnitt linear ab. Die Endgeschwindigkeit vE, die Fahrzeit t und der zurückgelegte Weg s sind bekannt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung der Anfangsgeschwindigkeit vA des Fahrzeugs:
vA = [1 Punkt]
Aufgabe 4321
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gold - Aufgabe A_160
Das Edelmetall Gold gilt als besonders wertvoll, weil es selten vorkommt, leicht zu Schmuck verarbeitet werden kann und sehr beständig ist.
Teil a
Der World Gold Council, eine globale Lobby-Organisation der Goldminenindustrie, schätzt die bis zum Jahr 2012 weltweit geförderte Goldmenge auf rund 1,713 ∙ 108 Kilogramm (kg). Gold hat eine Dichte von 19,3 Gramm pro Kubikzentimeter (g/cm³). Die Masse ist das Produkt von Volumen und Dichte. Stellen Sie sich vor, dass die gesamte weltweit geförderte Goldmenge in einen Würfel gegossen wird.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Kantenlänge dieses Würfels in Metern.
[1 Punkt]
Aufgabe 4327
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Stadtturm - Aufgabe A_161
Teil c
Der 51 m hohe Stadtturm hat die Form eines Quaders mit quadratischer Grundfläche; die Seitenlänge dieses Quadrats beträgt 4 m. Zwei gegenüberliegende Seitenwände des Stadtturms
sollen mit Glasplatten verkleidet werden. Pro Quadratmeter beträgt die Masse der verwendeten Glasplatten 30 Kilogramm.
1. Teilaufgabe - Bearbeitungszeit 5:40
Dokumentieren Sie, wie Sie die Gesamtmasse der Glasverkleidung in Tonnen berechnen können.
[1 Punkt]