Redaktion - Komplexe Zahlen I
Aufgabe 1
Addition komplexer Zahlen
Berechne:
\(\eqalign{ & w = {z_1} + {z_2} \cr & {z_1} = 4 + 5i \cr & {z_2} = 2 + 3i \cr}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 2
Addition komplexer Zahlen
Berechne:
\(\eqalign{ & w = {z_1} + {z_2} \cr & {z_1} = - 2 + 3i \cr & {z_2} = 1 - 2i \cr} \)
Aufgabe 3
Addition komplexer Zahlen
Berechne:
\(\eqalign{ & w = {z_1} + {z_2} \cr & {z_1} = 3\dfrac{3}{4} + 1\dfrac{1}{2}i \cr & {z_2} = 4\dfrac{1}{4} - 2\dfrac{1}{4}i \cr}\)
Aufgabe 4
Addition komplexer Zahlen
Berechne:
\(w = z + \overline z\)
Aufgabe 5
Addition von Wurzel im Bereich der komplexen Zahlen
Vereinfache unter Verwendung des Hauptwerts:
\(w = \sqrt { - 4} + \sqrt { - 9} + \sqrt { - 16}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6
Subtraktion komplexer Zahlen
Berechne:
\(\eqalign{ & w = {z_1} - {z_2} \cr & {z_1} = 4 + 5i \cr & {z_2} = 2 + 3i \cr}\)
Aufgabe 7
Subtraktion komplexer Zahlen
Berechne:
\(\eqalign{ & w = {z_1} - {z_2} \cr & {z_1} = - 2 + 3i \cr & {z_2} = 1 - 2i \cr}\)
Aufgabe 8
Subtraktion komplexer Zahlen
Berechne:
\(\eqalign{ & w = {z_1} - {z_2} \cr & {z_1} = 3\dfrac{3}{4} + 1\dfrac{1}{2}i \cr & {z_2} = 4\dfrac{1}{4} - 2\dfrac{1}{4}i \cr}\)
Aufgabe 9
Subtraktion komplexer Zahlen
Berechne:
\(w = z - \overline z\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 10
Subtraktion von Wurzeln im Bereich der komplexer Zahlen
Vereinfache unter Verwendung des Hauptwerts:
\(w = \sqrt { - 4} + \sqrt { - 9} - \sqrt { - 16}\)
Aufgabe 11
Multiplikation komplexer Zahlen
Berechne:
\(w = z \cdot \overline z\)
Aufgabe 12
Multiplikation komplexer Zahlen
Berechne:
\(\eqalign{ & w = {z_1} \cdot {z_2} \cr & {z_1} = 4 + 5i \cr & {z_2} = 2 + 3i \cr}\)