BMBWF - AN 4.1 .. AN 4.3: Summation und Integral
Aufgabe 1166
AHS - 1_166 & Lehrstoff: AN 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erklärung des bestimmten Integrals
Der Begriff des bestimmten Integrals soll erklärt werden.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Textbausteine so, dass eine korrekte Aussage entsteht!
Ein bestimmtes Integral kann als _____1_____ einer/eines _______2_______ gedeutet werden.
1 | |
Summe | A |
Produkt | B |
Grenzwert | C |
2 | |
Grenzwertes von Summen | I |
Summe von Produkten | II |
Produktes von Grenzwerten | III |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1167
AHS - 1_167 & Lehrstoff: AN 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Integral berechnen
Aufgabenstellung:
Berechnen Sie \(\int {\left( {a \cdot {h^3} + {a^2}} \right)} \,\,dh\)
Aufgabe 1172
AHS - 1_172 & Lehrstoff: AN 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Untersumme
Der Graph der in der nachstehenden Abbildung dargestellten Funktion f schließt mit der x-Achse im 1. Quadranten ein Flächenstück ein. Der Inhalt A dieses Flächenstücks kann mit dem Ausdruck \(f\left( {{x_1}} \right) \cdot \vartriangle x + f\left( {{x_2}} \right) \cdot \vartriangle x + f\left( {{x_3}} \right) \cdot \vartriangle x + f\left( {{x_4}} \right) \cdot \vartriangle x\) näherungsweise berechnet werden.
Aufgabenstellung:
Geben Sie die geometrische Bedeutung der Variablen Δx an und beschreiben Sie den Einfluss der Anzahl der Teilintervalle [xi; xi+1] von [0; a] auf die Genauigkeit des Näherungswertes für den Flächeninhalt A!
Aufgabe 1038
AHS - 1_038 & Lehrstoff: AN 4.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Unbestimmtes Integral
Gegeben sind Aussagen über die Lösung eines unbestimmten Integrals. Nur eine Rechnung ist richtig. Die Integrationskonstante wird in allen Fällen mit c = 0 angenommen.
- Aussage 1: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = {{\left( {6x + 5} \right)}^2}} \)
- Aussage 2: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = 3{x^2} + 5x}\)
- Aussage 3: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = {{\left( {6x + 15} \right)}^2}} \)
- Aussage 4: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = 3 \cdot \left( {{x^2} + 5x} \right)} \)
- Aussage 5: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = 3{x^2} + 15} \)
- Aussage 6: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = 6{x^2} + 15x}\)
Aufgabenstellung:
Kreuzen Sie die korrekte Rechnung an!
Aufgabe 1227
AHS - 1_227 & Lehrstoff: AN 4.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Integrationsregeln
Es sei f eine reelle Funktion und a eine reelle Zahl.
- Aussage 1: \(\int {a \cdot f\left( x \right)} \,\,dx = a \cdot \int {f\left( {x\,\,dx} \right)} \)
- Aussage 2: \(\int {f\left( {a \cdot x} \right)} \,\,dx = \int {f\left( a \right)} \,\,dx \cdot \int {f\left( x \right)} \,\,dx\)
- Aussage 3: \(\int {\left( {a + f\left( x \right)} \right)} \,\,dx = \int {a\,\,dx + \int {f\left( x \right)} } \,\,dx\)
- Aussage 4: \(\int {f\left( {a + x} \right)} \,\,dx = \int {f\left( a \right)} \,\,dx + \int {f\left( {x\,\,dx} \right)} \)
- Aussage 5: \({\int {f\left( x \right)} ^2}\,\,dx = \frac{{f{{\left( x \right)}^3}}}{3} + C\)
Aufgabenstellung
Kreuzen Sie die beiden zutreffenden Gleichungen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1060
AHS - 1_060 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bestimmte Integrale
Gegeben ist die Funktion \(f\left( x \right) = - {x^2} + 2x\)
Die nachstehende Tabelle zeigt Integrale
A | \(2 \cdot \int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx}\) |
B | \(\int\limits_1^3 {\left( { - {x^2} + 2x} \right)} \,\,dx\) |
C | \(\int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx + \left| {\int\limits_2^3 {\left( { - {x^2} + 2x} \right)\,\,dx} } \right|}\) |
D | \(\int\limits_0^1 {\left( { - {x^2} + 2x} \right)\,\,\operatorname{dx} - \int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx} } \) |
E | \(\left| {\int\limits_2^3 {\left( { - {x^2} + 2x} \right)\,\,dx} } \right|\) |
F | \(\int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx}\) |
Die nachstehende Tabelle zeigt Graphen der Funktion mit unterschiedlich schraffierten Flächenstücken.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Beurteilen Sie, ob die obenstehend angeführten Integrale (aus A bis F) den Flächeninhalt einer der markierten Flächen der Graphen (1 bis 4) ergeben, und ordnen Sie entsprechend zu!
Deine Antwort | |
Graph 1 | |
Graph 2 | |
Graph 3 | |
Graph 4 |
Aufgabe 1095
AHS - 1_095 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fläche zwischen zwei Kurven
Die Funktionsgraphen von f und g schließen ein gemeinsames Flächenstück ein.
- Aussage 1: \(\int\limits_{ - 1}^6 {\left[ {g\left( x \right) - f\left( x \right)} \right]} \,\,dx\)
- Aussage 2: \(\int\limits_{ - 1}^6 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx\)
- Aussage 3: \(\int\limits_{ - 1}^6 {f\left( x \right)\,\,dx + \int\limits_5^6 {g\left( x \right)\,\,dx - \int\limits_{ - 1}^5 {g\left( x \right)\,\,dx} } } \)
- Aussage 4: \(\left| {\int\limits_{ - 1}^6 {f\left( x \right)\,\,dx} } \right| + \left| {\int\limits_{ - 1}^6 {g\left( x \right)\,\,dx} } \right|\)
- Aussage 5: \(\int\limits_{ - 1}^6 {f\left( x \right)} \,\,dx - \int\limits_5^6 {g\left( x \right)\,\,dx + \left| {\int\limits_{ - 1}^5 {g\left( x \right)\,\,dx} } \right|}\)
Aufgabenstellung:
Mit welchen der nachstehenden Berechnungsvorschriften kann man den Flächeninhalt des gekennzeichneten Flächenstücks ermitteln? Kreuzen Sie die beiden zutreffenden Berechnungsvorschriften an!
Aufgabe 1096
AHS - 1_096 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Begrenzung einer Fläche
Der Inhalt derjenigen Fläche, die vom Graphen der Funktion \(f:x \to {x^2}\) , der positiven x-Achse und der Geraden mit der Gleichung x = a (a ∈ ℝ) eingeschlossen wird, beträgt 72 Flächeneinheiten.
Aufgabenstellung:
Berechnen Sie den Wert a!
Aufgabe 1113
AHS - 1_113 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Aussagen über bestimmte Integrale
Die stetige reelle Funktion f mit dem abgebildeten Graphen hat Nullstellen bei \({x_1} = 1;\,\,\,\,\,{x_2} = 3;\,\,\,\,\,{x_3} = 6;\)
- Aussage 1: \(\int\limits_1^3 {f\left( x \right)\,\,dx < 2} \)
- Aussage 2: \(\int\limits_1^6 {f\left( x \right)\,\,dx < 0}\)
- Aussage 3: \(\left| {\int\limits_3^6 {f\left( x \right)\,\,dx} } \right| < 6\)
- Aussage 4: \(\int\limits_1^3 {f\left( x \right)\,\,dx + \int\limits_3^6 {f\left( x \right)\,\,dx > 0} } \)
- Aussage 5: \(\int\limits_1^3 {f\left( x \right)} \,\,dx > 0\) und \(\int\limits_3^6 {f\left( x \right)\,\,dx < 0}\)
Aufgabenstellung:
Welche der folgenden Aussagen ist/sind zutreffend? Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1170
AHS - 1_170 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Stahlfeder
Um eine Stahlfeder aus der Ruhelage x0 = 0 um x cm zu dehnen, ist die Kraft F(x) erforderlich.
Aufgabenstellung:
Geben Sie an, was in diesem Kontext mit dem Ausdruck \(\int\limits_0^8 {F\left( x \right)} \) berechnet wird!
Aufgabe 1183
AHS - 1_183 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flächenberechnung
Die Summe A der Inhalte der beiden von den Graphen der Funktionen f und g eingeschlossenen Flächen soll berechnet werden.
- Aussage 1: \(A = \int\limits_1^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx\)
- Aussage 2: \(A = \int\limits_1^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx + \int\limits_3^8 {\left[ {g\left( x \right) - f\left( x \right)} \right]} } \,\,dx\)
- Aussage 3: \(A = \left| {\int\limits_1^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx} } \right|\)
- Aussage 4: \(A = \int\limits_1^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx - \int\limits_3^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx\)
- Aussage 5: \(A = \left| {\int\limits_1^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx} \right| + \left| {\int\limits_3^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx} \right|\)
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Formel(n) an!