BMBWF - FA 1.1 .. FA 1.9: Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
Aufgabe 1080
AHS - 1_080 & Lehrstoff: FA 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsgraph - ja oder nein?
Im Folgenden sind Darstellungen von Kurven und Geraden gegeben.
Zum Weiterlesen bitte aufklappen:
- Aussage 1:
- Aussage 2:
- Aussage 3:
- Aussage 4:
- Aussage 5:
Aufgabenstellung:
Kreuzen Sie diejenige(n) Abbildung(en) an, die Graph(en) einer reellen Funktion \(f:x \to f\left( x \right)\) ist/sind!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1120
AHS - 1_120 & Lehrstoff: FA 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Reelle Funktion
Eine reelle Funktion \(f:\left[ { - 3;3} \right] \to \mathbb{R}\) kann in einem Koordinatensystem als Graph dargestellt werden.
- Aussage 1:
- Aussage 2:
- Aussage 3:
- Aussage 4:
- Aussage 5:
Aufgabenstellung:
Kreuzen Sie die beiden Diagramme an, die einen möglichen Graphen der Funktion f zeigen!
Aufgabe 1240
AHS - 1_240 & Lehrstoff: FA 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsdarstellung einer Formel
Gegeben ist die Formel \(r = \dfrac{{2{s^2}t}}{u}\) für s, t, u > 0
- Aussage 1:
- Aussage 2:
- Aussage 3:
- Aussage 4:
- Aussage 5:
Aufgabenstellung
Wenn u und s konstant sind, dann kann r als eine Funktion in Abhängigkeit von t betrachtet werden. Kreuzen Sie denjenigen/diejenigen der unten dargestellten Funktionsgraphen an, der/die dann für die Funktion r möglich ist/sind!
Aufgabe 1241
AHS - 1_241 & Lehrstoff: FA 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Formel als Darstellung einer Funktion
Gegeben ist die Formel \(r = \dfrac{{2{s^2}t}}{u}\) für s, t, u > 0
- Aussage 1: lineare Funktion
- Aussage 2: konstante Funktion
- Aussage 3: quadratische Funktion
- Aussage 4: Wurzelfunktion
- Aussage 5: gebrochen rationale Funktion
- Aussage 6: Exponentialfunktion
Aufgabenstellung
Wenn u und t konstant sind, dann kann r als eine Funktion in Abhängigkeit von s betrachtet werden. Welchem Funktionstyp ist dann r zuzuordnen? Kreuzen Sie den zutreffenden Funktionstyp an!
Aufgabe 1301
AHS - 1_301 & Lehrstoff: FA 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratisches Prisma
Das Volumen V eines geraden quadratischen Prismas hängt von der Seitenlänge a der quadratischen Grundfläche und von der Höhe h ab. Es wird durch die Formel \(V = {a^2} \cdot h\) beschrieben.
Aufgabenstellung:
Stellen Sie die Abhängigkeit des Volumens V(a) in cm³ eines geraden quadratischen Prismas von der Seitenlänge a in cm bei konstanter Höhe h = 5 cm durch einen entsprechenden Funktionsgraphen im Intervall [0; 4] dar!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1323
AHS - 1_323 & Lehrstoff: FA 1.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionswerte
Die nachstehende Abbildung zeigt den Graphen einer Funktion f.
Aufgabenstellung:
Erstellen Sie aus dem Graphen von f eine Wertetabelle für \(- 10 \leqslant x \leqslant 20\) mit der Schrittweite 5!
Aufgabe 1324
AHS - 1_324 & Lehrstoff: FA 1.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Luftfeuchte
Wasserdampf ist dann gesättigt, wenn die maximal aufnehmbare Wassermenge (Sättigungsmenge, absolute Luftfeuchte) erreicht wird. Die nachstehende Tabelle enthält einige beispielhafte Werte zum Wassergehalt in der Luft (in g/m³) in Abhängigkeit von der Temperatur (in °C) für [0 °C; 100 °C] (Werte gerundet).
Temperatur (in °C) | 0 | 20 | 40 | 60 | 80 | 100 |
Wassergehalt (in g/m³) | 5 | 18 | 50 | 130 | 290 | 590 |
Datenquelle: http://de.wikipedia.org/wiki/Sättigung_(Physik)
Aufgabenstellung:
Stellen Sie den Zusammenhang zwischen der Temperatur und dem Wassergehalt für den angegebenen Temperaturbereich grafisch dar! Skalieren und beschriften Sie dazu im vorgegebenen Koordinatensystem in geeigneter Weise die senkrechte Achse so, dass alle in der Tabelle angeführten Werte dargestellt werden können!
Aufgabe 1011
AHS - 1_011 & Lehrstoff: FA 1.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer Polynomfunktion
Die Abbildung zeigt den Graphen einer Polynomfunktion f mit \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\)
Aufgabenstellung:
Geben Sie den Wert des Parameters d an!
Aufgabe 1022
AHS - 1_022 & Lehrstoff: FA 1.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionale Abhängigkeit
Die in der nachstehenden Abbildung dargestellte Polynomfunktion 2. Grades beschreibt die Höhe (in m) eines senkrecht nach oben geworfenen Körpers in Abhängigkeit von der Zeit (in s).
- Aussage 1: Der Körper befindet sich nach einer Sekunde und nach vier Sekunden in 20 m Höhe.
- Aussage 2: Nach fünf Sekunden ist der Körper in derselben Höhe wie zu Beginn der Bewegung.
- Aussage 3: Der Körper erreicht maximal 30 m Höhe.
- Aussage 4: Der Körper befindet sich nach 4,8 Sekunden in einer Höhe von 10 m.
- Aussage 5: Der Körper befindet sich nach ca. 2,5 Sekunden in der maximalen Höhe.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1081
AHS - 1_081 & Lehrstoff: FA 1.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Argument bestimmen
Gegeben ist eine Polynomfunktion dritten Grades durch ihren Funktionsgraphen.
Aufgabenstellung:
Ermitteln Sie denjenigen Wert x, für den gilt: \(f\left( {x - 3} \right) = 2\)
Aufgabe 1097
AHS - 1_097 & Lehrstoff: FA 1.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Werte einer linearen Funktion
Gegeben ist der Graph einer linearen Funktion f. Die Gerade enthält die Punkte P = (0|1) und Q = (2|0).
Aufgabenstellung:
Bestimmen Sie die Menge aller Werte x, für die gilt:\(–0,5 ≤ f(x) < 1,5\)!
Aufgabe 1098
AHS - 1_098 & Lehrstoff: FA 1.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionswerte
Gegeben ist der Graph der Funktion f mit \(f\left( x \right) = \dfrac{9}{{{x^2}}}\)