Österreichische AHS Matura - 2015.09.21 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1445
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungen
Gegeben sind fünf Gleichungen in der Unbekannten x.
- Aussage 1: \(2x = 2x + 1\)
- Aussage 2: \(x = 2x\)
- Aussage 3: \({x^2} + 1 = 0\)
- Aussage 4: \({x^2} = - x\)
- Aussage 5: \({x^3} = - 1\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Welche dieser Gleichungen besitzt / besitzen zumindest eine reelle Lösung? Kreuzen Sie die zutreffende(n) Gleichung(en) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1444
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssystem
Eine Teilmenge der Lösungsmenge einer linearen Gleichung wird durch die nachstehende Abbildung dargestellt. Die durch die Gleichung beschriebene Gerade g verlauft durch die Punkte P1 und P2, deren Koordinaten jeweils ganzzahlig sind.
Die lineare Gleichung für g und eine zweite lineare Gleichung (h1, oder h2 oder h3) bilden ein lineares Gleichungssystem.
- Satzteil 1_1: \({h_1}:{\text{ }}2x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}1\)
- Satzteil 1_1: \({h_2}:{\text{ }}x{\text{ }} + {\text{ }}2y{\text{ }} = {\text{ }}8\)
- Satzteil 1_1: \({{\text{h}}_3}{\text{: y = 5}}\)
- Satzteil 2_1: hat das Gleichungssystem unendlich viele Lösungen
- Satzteil 2_2: ist die Lösungsmenge des Gleichungssystems \(L = \left\{ {\left( { - 2\left| 4 \right.} \right)} \right\}\)
- Satzteil 2_3: hat das Gleichungssystem keine Lösung
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Hat die zweite lineare Gleichung die Form __1___, so ___2__
Aufgabe 1443
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
In der unten stehenden Abbildung sind die Vektoren \(\overrightarrow a ,\,\,\overrightarrow b {\rm{ und }}\overrightarrow c \) als Pfeile dargestellt.
Aufgabenstellung:
Stellen Sie den Vektor \(\overrightarrow d = \overrightarrow a + \overrightarrow b - 2 \cdot \overrightarrow c \) als Pfeil dar!
Aufgabe 1442
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schnittpunkt einer Geraden mit der x-Achse
Gegeben ist folgende Parameterdarstellung einer Geraden g: \(g:\,\,X = \left( {\begin{array}{*{20}{c}} 1\\ { - 5} \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 1\\ 7 \end{array}} \right)\) mit \(t \in {\Bbb R}\)
Aufgabenstellung:
Geben Sie die fehlende Koordinate des Schnittpunktes \(S\left( {{S_x}\left| 0 \right.} \right)\) der Geraden g mit der x-Achse an!
Aufgabe 1441
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Normalvektor
Gegeben sind die beiden Punkte \(A = \left( { - 2\left| 1 \right.} \right)\)und \(B = \left( {3\left| { - 1} \right.} \right)\)
Aufgabenstellung:
Geben Sie einen Vektor \(\overrightarrow n\) an, der auf den Vektor \(\overrightarrow {AB}\) normal steht!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1440
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonnenhöhe
Unter der Sonnenhöhe φ versteht man denjenigen spitzen Winkel, den die einfallenden Sonnenstrahlen mit einer horizontalen Ebene einschließen. Die Schattenlänge s eines Gebäudes der Höhe h hangt von der Sonnenhöhe φ ab (s, h in Metern).
Aufgabenstellung:
Geben Sie eine Formel an, mit der die Schattenlange s eines Gebäudes der Hohe h mithilfe der Sonnenhöhe φ berechnet werden kann!
Aufgabe 1439
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 7. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bewegung
Ein Körper wird entlang einer Geraden bewegt. Die Entfernungen des Körpers (in Metern) vom Ausgangspunkt seiner Bewegung nach t Sekunden sind in der nachstehenden Tabelle angeführt.
Zeit (in Sekunden) | zurückgelegter Weg (in Meter) |
0 | 0 |
3 | 20 |
6 | 50 |
10 | 70 |
Der Bewegungsablauf des Körpers weist folgende Eigenschaften auf:
- (positive) Beschleunigung im Zeitintervall [0; 3) aus dem Stillstand bei t = 0
- konstante Geschwindigkeit im Zeitintervall [3; 6]
- Bremsen (negative Beschleunigung) im Zeitintervall (6; 10] bis zum Stillstand bei t = 10
Aufgabenstellung:
Zeichnen Sie den Graphen einer möglichen Zeit-Weg-Funktion s, die den beschriebenen Sachverhalt modelliert, in das nachstehende Koordinatensystem!
Aufgabe 1438
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Modellierung
Eine lineare Funktion f wird allgemein durch eine Funktionsgleichung \(f\left( x \right) = k \cdot x + d\) mit den Parametern \(k \in {\Bbb R}{\text{ und }}d \in {\Bbb R}\) dargestellt.
- Aussage 1: Die Gesamtkosten bei der Herstellung einer Keramikglasur setzen sich aus einmaligen Kosten von € 1.000 für die Maschine und € 8 pro erzeugtem Kilogramm Glasur zusammen. Stellen Sie die Gesamtkosten für die Herstellung einer Keramikglasur in Abhängigkeit von den erzeugten Kilogramm Glasur dar!
- Aussage 2: Eine Bakterienkultur besteht zu Beginn einer Messung aus 20 000 Bakterien. Die Anzahl der Bakterien verdreifacht sich alle vier Stunden. Stellen Sie die Anzahl der Bakterien in dieser Kultur in Abhängigkeit von der verstrichenen Zeit (in Stunden) dar!
- Aussage 3: Die Anziehungskraft zweier Planeten verhält sich indirekt proportional zum Quadrat des Abstandes der beiden Planeten. Stellen Sie die Abhängigkeit der Anziehungskraft zweier Planeten von ihrem Abstand dar!
- Aussage 4: Ein zinsenloses Wohnbaudarlehen von € 240.000 wird 40 Jahre lang mit gleichbleibenden Jahresraten von € 6.000 zurückgezahlt. Stellen Sie die Restschuld in Abhängigkeit von der Anzahl der vergangenen Jahre dar!
- Aussage 5: Bleibt in einem Stromkreis die Spannung konstant, so ist die Leistung direkt proportional zur Stromstärke.Stellen Sie die Leistung im Stromkreis in Abhängigkeit von der Stromstärke dar!
Aufgabenstellung:
Welche der oben angegebenen Aufgabenstellungen kann / können mithilfe einer linearen Funktion modelliert werden? Kreuzen Sie die zutreffende(n) Aufgabenstellung(en) an!
Aufgabe 1437
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Potenzfunktion
In der nachstehenden Abbildung ist der Graph einer Potenzfunktion f vom Typ \(f\left( x \right) = a \cdot {x^z}\) mit \(a \in {\Bbb R};\,\,\,a \ne 0;\,\,\,z \in {\Bbb Z}\) dargestellt.
- Aussage 1: \(f\left( x \right) = 2 \cdot {x^{ - 4}}\)
- Aussage 2: \(f\left( x \right) = - {x^{ - 2}}\)
- Aussage 3: \(f\left( x \right) = - {x^2}\)
- Aussage 4: \(f\left( x \right) = - {x^{ - 1}}\)
- Aussage 5: \( f\left( x \right) = {x^{ - 2}}\)
- Aussage 6: \(f\left( x \right) = {x^{ - 1}}\)
Aufgabenstellung:
Eine der obenstehenden Gleichungen ist eine Gleichung dieser Funktion f. Kreuzen Sie die zutreffende Gleichung an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1436
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften einer Polynomfunktion
Eine reelle Funktion f mit \(f\left( x \right) = a{x^3} + b{x^2} + cx + d{\text{ }}\)mit \(a,\,\,b,\,\,c,\,\,d \in {\Bbb R}{\text{ und }}a \ne 0\) heißt Polynomfunktion dritten Grades.
- Aussage 1: Jede Polynomfunktion dritten Grades hat immer zwei Nullstellen.
- Aussage 2: Jede Polynomfunktion dritten Grades hat genau eine Wendestelle.
- Aussage 3: Jede Polynomfunktion dritten Grades hat mehr Nullstellen als lokale Extremstellen.
- Aussage 4: Jede Polynomfunktion dritten Grades hat mindestens eine lokale Maximumstelle.
- Aussage 5: Jede Polynomfunktion dritten Grades hat höchstens zwei lokale Extremstellen.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1435
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Exponentialfunktion
Gegeben ist der Graph einer Exponentialfunktion f mit \(f\left( x \right) = a \cdot {b^x}\) mit \(a,\,\,b \in {R^ + }\) durch die Punkte \(P = \left( {0\left| {25} \right.} \right)\)und \(Q = \left( {1\left| {20} \right.} \right)\)
Aufgabenstellung:
Geben Sie eine Funktionsgleichung der dargestellten Exponentialfunktion f an!
Aufgabe 1434
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Gegeben sind die Graphen von vier Funktionen der Form \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\)mit \(a,\,\,b \in {\Bbb R}\)
A | \(\sin \left( x \right)\) |
B | \(1,5 \cdot \sin \left( x \right)\) |
C | \(\sin \left( {0,5x} \right)\) |
D | \(1,5 \cdot \sin \left( {2x} \right)\) |
E | \(2 \cdot \sin \left( {0,5x} \right)\) |
F | \(2 \cdot \sin \left( {3x} \right)\) |
Aufgabenstellung:
Ordnen Sie jedem Graphen den dazugehörigen Funktionsterm (aus A bis F) zu!
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Deine Antwort | |
Graph 1 | |
Graph 2 | |
Graph 3 | |
Graph 4 |