Österreichische AHS Matura - 2017.05.10 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1565
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganze Zahlen
Es sei a eine positive ganze Zahl.
- Aussage 1: \({a^{ - 1}}\)
- Aussage 2: \({a^2}\)
- Aussage 3: \({a^{\dfrac{1}{2}}} \)
- Aussage 4: \(3 \cdot a\)
- Aussage 5: \(\dfrac{a}{2}\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Welche der obenstehenden Ausdrucke ergeben für a ∈ ℤ+ stets eine ganze Zahl? Kreuzen Sie die beiden zutreffenden Ausdrücke an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1564
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kapital
Ein Kapital K wird 5 Jahre lang mit einem jährlichen Zinssatz von 1,2 % verzinst.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Gegeben ist folgender Term:
\(K \cdot {1,012^5} - K\)
Geben Sie die Bedeutung dieses Terms im gegebenen Kontext an!
Aufgabe 1563
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Futtermittel
Ein Bauer hat zwei Sorten von Fertigfutter für die Rindermast gekauft. Fertigfutter A hat einen Proteinanteil von 14 %, während Fertigfutter B einen Proteinanteil von 35 % hat. Der Bauer möchte für seine Jungstiere 100 kg einer Mischung dieser beiden Fertigfutter-Sorten mit einem Proteinanteil von 18 % herstellen. Es sollen a kg der Sorte A mit b kg der Sorte B gemischt werden.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie zwei Gleichungen in den Variablen a und b an, mithilfe derer die für diese Mischung benötigten Mengen berechnet werden können!
- 1. Gleichung:
- 2. Gleichung:
Aufgabe 1562
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quader mit quadratischer Grundfläche
Die nachstehende Abbildung zeigt einen Quader, dessen quadratische Grundfläche in der xy-Ebene liegt. Die Länge einer Grundkante beträgt 5 Längeneinheiten, die Körperhöhe beträgt 10 Längeneinheiten. Der Eckpunkt D liegt im Koordinatenursprung, der Eckpunkt C liegt auf der positiven y-Achse. Der Eckpunkt E hat somit die Koordinaten E = (5|0|10).
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie die Koordinaten (Komponenten) des Vektors \(\overrightarrow {HB}\) an!
Aufgabe 1561
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallelität von Geraden
Gegeben sind folgende Parameterdarstellungen der Geraden g und h:
\(\begin{array}{l} g:X = \left( {\begin{array}{*{20}{c}} 1\\ 1\\ 1 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} { - 3}\\ 1\\ 2 \end{array}} \right)\,\,\,\,\,mit\,\,\,t \in \Bbb R\\ h:X = \left( {\begin{array}{*{20}{c}} 3\\ 1\\ 1 \end{array}} \right) + s \cdot \left( {\begin{array}{*{20}{c}} 6\\ {{h_y}}\\ {{h_z}} \end{array}} \right)\,\,\,\,\,mit\,\,\,s \in \Bbb R\end{array}\)
Aufgabenstellung
Bestimmen Sie die Koordinaten hy und hz des Richtungsvektors der Geraden h so, dass die Gerade h zur Geraden g parallel ist!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1560
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Koordinaten eines Punktes
In der unten stehenden Abbildung ist der Punkt P = (–3|–2) dargestellt. Die Lage des Punktes P kann auch durch die Angabe des Abstands \(r = \overline {OP}\) und die Größe des Winkels \(\varphi\) eindeutig festgelegt werden.
Aufgabenstellung
Berechnen Sie die Größe des Winkels \(\varphi\)
Aufgabe 1559
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zylindervolumen
Bei einem Drehzylinder wird der Radius des Grundkreises mit r und die Höhe des Zylinders mit h bezeichnet. Ist die Höhe des Zylinders konstant, dann beschreibt die Funktion V mit \(V\left( r \right) = {r^2} \cdot \pi \cdot h\) die Abhängigkeit des Zylindervolumens vom Radius.
Aufgabenstellung
Im nachstehenden Koordinatensystem ist der Punkt \(P = \left( {{r_1}\left| {V\left( {{r_1}} \right)} \right.} \right)\) eingezeichnet. Ergänzen Sie in diesem Koordinatensystem den Punkt \(Q = \left( {3 \cdot {r_1}\left| {V\left( {3 \cdot {r_1}} \right)} \right.} \right)\)
Aufgabe 1558
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Krümmungsverhalten einer Polynomfunktion
Der Graph einer Polynomfunktion dritten Grades hat im Punkt T = (–3|1) ein lokales Minimum, in H = (–1|3) ein lokales Maximum und in W = (–2|2) einen Wendepunkt.
- Aussage 1: \(\left( { - \infty ;2} \right)\)
- Aussage 2: \(\left( { - \infty ; - 2} \right)\)
- Aussage 3: \(\left( { - 3; - 1} \right)\)
- Aussage 4: \(\left( { - 2;2} \right)\)
- Aussage 5: \(\left( { - 2;\infty } \right)\)
- Aussage 6: \(\left( {3;\infty } \right)\)
Aufgabenstellung:
In welchem Intervall ist diese Funktion linksgekrümmt (positiv gekrümmt)? Kreuzen Sie das zutreffende Intervall an!
Aufgabe 1557
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Räuber-Beute-Modell
Das Räuber-Beute-Modell zeigt vereinfacht Populationsschwankungen einer Räuberpopulation (z. B. der Anzahl von Kanadischen Luchsen) und einer Beutepopulation (z. B. der Anzahl von Schneeschuhhasen). Die in der unten stehenden Grafik abgebildeten Funktionen R und B beschreiben modellhaft die Anzahl der Räuber R(t) bzw. die Anzahl der Beutetiere B(t) für einen beobachteten Zeitraum von 24 Jahren (B(t), R(t) in 10 000 Individuen, t in Jahren).
Aufgabenstellung
Geben Sie alle Zeitintervalle im dargestellten Beobachtungszeitraum an, in denen sowohl die Räuberpopulation als auch die Beutepopulation abnimmt!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1556
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Funktionen
- Aussage A: \(k = 0,\,\,\,\,\,d < 0\)
- Aussage B: \(k > 0,\,\,\,\,\,d > 0\)
- Aussage C: \(k = 0,\,\,\,\,\,d > 0\)
- Aussage D: \(k < 0,\,\,\,\,\,d < 0\)
- Aussage E: \(k > 0,\,\,\,\,\,d < 0\)
- Aussage F: \(k < 0,\,\,\,\,\,d > 0\)
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Ordnen Sie den vier Graphen jeweils die entsprechende Aussage über die Parameter k und d (aus A bis F) zu!
Aufgabe 1555
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Negative Funktionswerte
Gegeben ist die Gleichung einer reellen Funktion f mit \(f\left( x \right) = {x^2} - x - 6\). Einen Funktionswert f(x) nennt man negativ, wenn f(x) < 0 gilt.
Aufgabenstellung:
Bestimmen Sie alle x ∈ ℝ, deren zugehöriger Funktionswert f(x) negativ ist!
Aufgabe 1554
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit von Cobalt-60
Das radioaktive Isotop Cobalt-60 wird unter anderem zur Konservierung von Lebensmitteln und in der Medizin verwendet. Das Zerfallsgesetz für Cobalt-60 lautet \(N\left( t \right) = {N_0} \cdot {e^{ - 0,13149 \cdot t}}\) mit t in Jahren. Dabei bezeichnet N0 die vorhandene Menge des Isotops zum Zeitpunkt t = 0 und N(t) die vorhandene Menge zum Zeitpunkt t ≥ 0.
Aufgabenstellung
Berechnen Sie die Halbwertszeit von Cobalt-60!