Österreichische AHS Matura - 2017.05.10 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1565
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganze Zahlen
Es sei a eine positive ganze Zahl.
- Aussage 1: \({a^{ - 1}}\)
- Aussage 2: \({a^2}\)
- Aussage 3: \({a^{\dfrac{1}{2}}} \)
- Aussage 4: \(3 \cdot a\)
- Aussage 5: \(\dfrac{a}{2}\)
Aufgabenstellung
Welche der obenstehenden Ausdrucke ergeben für a ∈ ℤ+ stets eine ganze Zahl? Kreuzen Sie die beiden zutreffenden Ausdrücke an!
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 1564
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kapital
Ein Kapital K wird 5 Jahre lang mit einem jährlichen Zinssatz von 1,2 % verzinst.
Aufgabenstellung:
Gegeben ist folgender Term:
\(K \cdot {1,012^5} - K\)
Geben Sie die Bedeutung dieses Terms im gegebenen Kontext an!
Aufgabe 1563
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Futtermittel
Ein Bauer hat zwei Sorten von Fertigfutter für die Rindermast gekauft. Fertigfutter A hat einen Proteinanteil von 14 %, während Fertigfutter B einen Proteinanteil von 35 % hat. Der Bauer mochte für seine Jungstiere 100 kg einer Mischung dieser beiden Fertigfutter-Sorten mit einem Proteinanteil von 18 % herstellen. Es sollen a kg der Sorte A mit b kg der Sorte B gemischt werden.
Aufgabenstellung:
Geben Sie zwei Gleichungen in den Variablen a und b an, mithilfe derer die für diese Mischung benötigten Mengen berechnet werden können!
- 1. Gleichung:
- 2. Gleichung:
Aufgabe 1562
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quader mit quadratischer Grundfläche
Die nachstehende Abbildung zeigt einen Quader, dessen quadratische Grundfläche in der xy-Ebene liegt. Die Länge einer Grundkante beträgt 5 Längeneinheiten, die Körperhöhe beträgt 10 Langeneinheiten. Der Eckpunkt D liegt im Koordinatenursprung, der Eckpunkt C liegt auf der positiven y-Achse. Der Eckpunkt E hat somit die Koordinaten E = (5|0|10).
Aufgabenstellung:
Geben Sie die Koordinaten (Komponenten) des Vektors \(\overrightarrow {HB}\) an!
Aufgabe 1561
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallelität von Geraden
Gegeben sind folgende Parameterdarstellungen der Geraden g und h:
\(\begin{array}{l} g:X = \left( {\begin{array}{*{20}{c}} 1\\ 1\\ 1 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} { - 3}\\ 1\\ 2 \end{array}} \right)\,\,\,\,\,mit\,\,\,t \in \Bbb R\\ h:X = \left( {\begin{array}{*{20}{c}} 3\\ 1\\ 1 \end{array}} \right) + s \cdot \left( {\begin{array}{*{20}{c}} 6\\ {{h_y}}\\ {{h_z}} \end{array}} \right)\,\,\,\,\,mit\,\,\,s \in \Bbb R\end{array}\)
Aufgabenstellung
Bestimmen Sie die Koordinaten hy und hz des Richtungsvektors der Geraden h so, dass die Gerade h zur Geraden g parallel ist!
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 1560
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Koordinaten eines Punktes
In der unten stehenden Abbildung ist der Punkt P = (–3|–2) dargestellt. Die Lage des Punktes P kann auch durch die Angabe des Abstands \(r = \overline {OP}\) und die Größe des Winkels \(\varphi\) eindeutig festgelegt werden.
Aufgabenstellung
Berechnen Sie die Größe des Winkels \(\varphi\)
Aufgabe 1559
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zylindervolumen
Bei einem Drehzylinder wird der Radius des Grundkreises mit r und die Höhe des Zylinders mit h bezeichnet. Ist die Höhe des Zylinders konstant, dann beschreibt die Funktion V mit \(V\left( r \right) = {r^2} \cdot \pi \cdot h\) die Abhängigkeit des Zylindervolumens vom Radius.
Aufgabenstellung
Im nachstehenden Koordinatensystem ist der Punkt \(P = \left( {{r_1}\left| {V\left( {{r_1}} \right)} \right.} \right)\) eingezeichnet. Ergänzen Sie in diesem Koordinatensystem den Punkt \(Q = \left( {3 \cdot {r_1}\left| {V\left( {3 \cdot {r_1}} \right)} \right.} \right)\)
Aufgabe 1558
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Krümmungsverhalten einer Polynomfunktion
Der Graph einer Polynomfunktion dritten Grades hat im Punkt T = (–3|1) ein lokales Minimum, in H = (–1|3) ein lokales Maximum und in W = (–2|2) einen Wendepunkt.
- Aussage 1: \(\left( { - \infty ;2} \right)\)
- Aussage 2: \(\left( { - \infty ; - 2} \right)\)
- Aussage 3: \(\left( { - 3; - 1} \right)\)
- Aussage 4: \(\left( { - 2;2} \right)\)
- Aussage 5: \(\left( { - 2;\infty } \right)\)
- Aussage 6: \(\left( {3;\infty } \right)\)
Aufgabenstellung:
In welchem Intervall ist diese Funktion linksgekrümmt (positiv gekrümmt)? Kreuzen Sie das zutreffende Intervall an!
Aufgabe 1557
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Räuber-Beute-Modell
Das Räuber-Beute-Modell zeigt vereinfacht Populationsschwankungen einer Räuberpopulation (z. B. der Anzahl von Kanadischen Luchsen) und einer Beutepopulation (z. B. der Anzahl von Schneeschuhhasen). Die in der unten stehenden Grafik abgebildeten Funktionen R und B beschreiben modellhaft die Anzahl der Räuber R(t) bzw. die Anzahl der Beutetiere B(t) für einen beobachteten Zeitraum von 24 Jahren (B(t), R(t) in 10 000 Individuen, t in Jahren).
Aufgabenstellung
Geben Sie alle Zeitintervalle im dargestellten Beobachtungszeitraum an, in denen sowohl die Räuberpopulation als auch die Beutepopulation abnimmt!
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 1556
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Funktionen
- Aussage A: \(k = 0,\,\,\,\,\,d < 0\)
- Aussage B: \(k > 0,\,\,\,\,\,d > 0\)
- Aussage C: \(k = 0,\,\,\,\,\,d > 0\)
- Aussage D: \(k < 0,\,\,\,\,\,d < 0\)
- Aussage E: \(k > 0,\,\,\,\,\,d < 0\)
- Aussage F: \(k < 0,\,\,\,\,\,d > 0\)
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Ordnen Sie den vier Graphen jeweils die entsprechende Aussage über die Parameter k und d (aus A bis F) zu!
Aufgabe 1555
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Negative Funktionswerte
Gegeben ist die Gleichung einer reellen Funktion f mit \(f\left( x \right) = {x^2} - x - 6\). Einen Funktionswert f(x) nennt man negativ, wenn f(x) < 0 gilt.
Aufgabenstellung:
Bestimmen Sie alle x ∈ ℝ, deren zugehöriger Funktionswert f(x) negativ ist!
Aufgabe 1554
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit von Cobalt-60
Das radioaktive Isotop Cobalt-60 wird unter anderem zur Konservierung von Lebensmitteln und in der Medizin verwendet. Das Zerfallsgesetz für Cobalt-60 lautet \(N\left( t \right) = {N_0} \cdot {e^{ - 0,13149 \cdot t}}\) mit t in Jahren. Dabei bezeichnet N0 die vorhandene Menge des Isotops zum Zeitpunkt t = 0 und N(t) die vorhandene Menge zum Zeitpunkt t ≥ 0.
Aufgabenstellung
Berechnen Sie die Halbwertszeit von Cobalt-60!