Österreichische AHS Matura - 2018.05.09 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1614
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zusammenhang zweier Variablen
Für \(a,b \in {\Bbb R}\) gilt der Zusammenhang \(a \cdot b = 1\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Zwei der fünf nachstehenden Aussagen treffen in jedem Fall zu. Kreuzen Sie die beiden zutreffenden Aussagen an!
- Aussage 1: Wenn a kleiner als null ist, dann ist auch b kleiner als null.
- Aussage 2: Die Vorzeichen von a und b können unterschiedlich sein.
- Aussage 3: Für jedes \(n \in {\Bbb N}\) gilt: \(\left( {a - n} \right) \cdot \left( {b + n} \right) = 1\)
- Aussage 4: Für jedes \(n \in {\Bbb N}\backslash \left\{ 0 \right\}\) gilt: \(\left( {a \cdot n} \right) \cdot \left( {\dfrac{b}{n}} \right) = 1\)
- Aussage 5: \(a \ne b\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1615
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Solaranlagen
Eine Gemeinde unterstützt den Neubau von Solaranlagen in h Haushalten mit jeweils p % der Anschaffungskosten, wobei das arithmetische Mittel der Anschaffungskosten für eine Solaranlage für einen Haushalt in dieser Gemeinde e Euro beträgt.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Interpretieren Sie den Term \(h \cdot e \cdot \dfrac{p}{{100}}\) im angegebenen Kontext.
Aufgabe 1616
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösungsfälle quadratischer Gleichungen
Gegeben ist eine quadratische Gleichung der Form \(r \cdot {x^2} + s \cdot x + t = 0{\text{ mit }}r,s,t \in {\Bbb R}\backslash \left\{ 0 \right\}\). Die Anzahl der reellen Lösungen der Gleichung hängt von r, s und t ab.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie die Anzahl der reellen Lösungen der gegebenen Gleichung an, wenn r und t verschiedene Vorzeichen haben, und begründen Sie Ihre Antwort allgemein!
Aufgabe 1617
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kräfte
An einem Massenpunkt M greifen drei Kräfte an. Diese sind durch die Vektoren \(\overrightarrow a ,\overrightarrow b {\text{ und }}\overrightarrow c\) gegeben.
Aufgabenstellung:
Zeichnen Sie in der nachstehenden Abbildung einen Kraftvektor \(\overrightarrow d \) so ein, dass die Summe aller vier Kräfte (in jeder Komponente) gleich null ist!
Aufgabe 1618
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 5. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechter Winkel
Gegeben ist eine Strecke \(AB{\text{ im }}{{\Bbb R}^2}{\text{ mit }}A = \left( {3\left| 4 \right.} \right){\text{ und }}B = \left( { - 2\left| 1 \right.} \right)\)
Aufgabenstellung:
Geben Sie einen möglichen Vektor \(\overrightarrow n \in {{\Bbb R}^2}\) mit \(\overrightarrow n \ne \left( {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right)\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1619
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinus und Cosinus
Die nachstehende Abbildung zeigt einen Kreis mit dem Mittelpunkt O und dem Radius 1. Die Punkte A = (1|0) und P liegen auf der Kreislinie. Der eingezeichnete Winkel α wird vom Schenkel OA zum Schenkel OP gegen den Uhrzeigersinn gemessen.
Ein Punkt Q auf der Kreislinie soll in analoger Weise einen Winkel β festlegen, für den folgende Beziehungen gelten: \(\sin \left( {\beta} \right) = - \sin \left( \alpha \right)\) und \(\cos \left( \beta \right) = \cos \left( \alpha \right)\)
Aufgabenstellung
Zeichnen Sie in der oben stehenden Abbildung den Punkt Q ein!
Aufgabe 1620
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Pyramide
Die Oberfläche einer regelmäßigen quadratischen Pyramide kann als Funktion O in Abhängigkeit von der Länge der Grundkante a und der Höhe der Seitenfläche h1 aufgefasst werden. Es gilt: \(O\left( {a,{h_1}} \right) = {a^2} + 2 \cdot a \cdot {h_1}\) wobei \(a \in {{\Bbb R}^ + }\) und \({h_1} > \dfrac{a}{2}\)
Aufgabenstellung
Gegeben sind sechs Aussagen zur Oberflache von regelmäßigen quadratischen Pyramiden. Kreuzen Sie die zutreffende Aussage an!
- Aussage 1: Ist h1 konstant, dann ist die Oberflache direkt proportional zu a.
- Aussage 2: Ist a konstant, dann ist die Oberflache direkt proportional zu h1.
- Aussage 3: Für a = 1 cm ist die Oberflache sicher grösser als 2 cm2.
- Aussage 4: Für a = 1 cm ist die Oberflache sicher kleiner als 10 cm2.
- Aussage 5: Werden sowohl a als auch h1 verdoppelt, so wird die Oberflache verdoppelt.
- Aussage 6: Ist h1 = a2, dann kann die Oberfläche durch eine Exponentialfunktion in Abhängigkeit von a beschrieben werden.
Aufgabe 1621
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Radfahrer
Zwei Radfahrer A und B fahren mit Elektrofahrrädern vom gleichen Startpunkt aus mit jeweils konstanter Geschwindigkeit auf einer geradlinigen Straße in dieselbe Richtung. In der nachstehenden Abbildung sind die Graphen der Funktionen sA und sB dargestellt, die den von den Radfahrern zurückgelegten Weg in Abhängigkeit von der Fahrzeit beschreiben. Die markierten Punkte haben die Koordinaten (0 | 0), (2 | 0) bzw. (8 | 2 400).
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die der obigen Abbildung entnommen werden können!
- Aussage 1: Der Radfahrer B startet zwei Minuten später als der Radfahrer A.
- Aussage 2: Die Geschwindigkeit des Radfahrers A betragt 200 Meter pro Minute.
- Aussage 3: Der Radfahrer B holt den Radfahrer A nach einer Fahrstrecke von 2,4 Kilometern ein.
- Aussage 4: Acht Minuten nach dem Start von Radfahrer B sind die beiden Radfahrer gleich weit vom Startpunkt entfernt.
- Aussage 5: Vier Minuten nach der Abfahrt des Radfahrers A sind die beiden Radfahrer 200 Meter voneinander entfernt.
Aufgabe 1622
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen quadratischer Funktionen
Die nachstehende Abbildung zeigt die Graphen quadratischer Funktionen f1, f2 und f3 mit den Gleichungen \({f_i}\left( x \right) = {a_i} \cdot {x^2} + {b_i}\) wobei gilt: \({a_i},{b_i} \in {\Bbb R};\,\,\,\,\,i \in \left\{ {1,2,3} \right\}\)
Aufgabenstellung
Ordnen Sie die Parameterwerte ai und bi jeweils der Größe nach, beginnend mit dem kleinsten!
- Parameterwerte ai: _______ < _______ < _______
- Parameterwerte bi: _______ < _______ < _______
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1623
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion
Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f.
Aufgabenstellung:
Begründen Sie, warum es sich bei der dargestellten Funktion nicht um eine Polynomfunktion dritten Grades handeln kann!
Aufgabe 1624
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zellkulturen
Im Rahmen eines biologischen Experiments werden sechs Zellkulturen günstigen und ungünstigen äußeren Bedingungen ausgesetzt, wodurch die Anzahl der Zellen entweder exponentiell zunimmt oder exponentiell abnimmt. Dabei gibt Ni (t) die Anzahl der Zellen in der jeweiligen Zellkultur t Tage nach Beginn des Experiments an.
(i = 1, 2, 3, 4, 5, 6).
Aufgabenstellung:
Ordnen Sie den vier beschriebenen Veränderungen (I, II, III, IV) jeweils die zugehörige Funktionsgleichung (aus A bis F) zu!
\({N_1}\left( t \right) = {N_1}\left( 0 \right) \cdot {0,15^t}\) | A |
\({N_2}\left( t \right) = {N_2}\left( 0 \right) \cdot {0,5^t}\) | B |
\({N_3}\left( t \right) = {N_3}\left( 0 \right) \cdot {0,85^t}\) | C |
\({N_4}\left( t \right) = {N_4}\left( 0 \right) \cdot {1,5^t}\) | D |
\({N_5}\left( t \right) = {N_5}\left( 0 \right) \cdot {1,85^t}\) | E |
\({N_6}\left( t \right) = {N_6}\left( 0 \right) \cdot {2^t}\) | F |
- Veränderung I: Die Anzahl der Zellen verdoppelt sich pro Tag.
- Veränderung II: Die Anzahl der Zellen nimmt pro Tag um 85 % zu.
- Veränderung III: Die Anzahl der Zellen nimmt pro Tag um 85 % ab.
- Veränderung IV: Die Anzahl der Zellen nimmt pro Tag um die Hälfte ab.
Aufgabe 1625
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 12. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Für \(a,b \in {{\Bbb R}^ + }\) sei die Funktion \(f:{\Bbb R} \to {\Bbb R}\) mit \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\) für \(x \in {\Bbb R}\) gegeben. Die beiden nachstehenden Eigenschaften der Funktion f sind bekannt:
- Die (kleinste) Periode der Funktion f ist π.
- Die Differenz zwischen dem größten und dem kleinsten Funktionswert von f beträgt 6.
Aufgabenstellung
Geben Sie a und b an!
- a =
- b =