Österreichische BHS Matura - 2019.05.08 - HUM & HLFS - 3 Teil B Beispiele
Aufgabe 4349
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil a
In der nachstehenden Abbildung ist der Graph der Preisfunktion der Nachfrage p für Betonrohre des Modells A dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe der obigen Abbildung eine Gleichung der Preisfunktion der Nachfrage p.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie den Wert der Steigung von p im gegebenen Sachzusammenhang.
[1 Punkt]
Die Betonrohre des Modells A werden um € 32 pro Stuck verkauft.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die zugehörige Anzahl der nachgefragten Betonrohre des Modells A.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4350
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil b
Für Betonrohre des Modells B geht man von einer kubischen Gewinnfunktion G aus.
x | Absatzmenge in ME |
G(x) | Gewinn bei der Absatzmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Aussagen jeweils die zutreffende Gleichung aus A bis D zu.
[2 zu 4] [1 Punkt]
- Aussage 1: Der Break-even-Point liegt bei 200 ME.
- Aussage 2: Das Gewinnmaximum liegt bei 200 ME.
- Gleichung A: G(0)=200
- Gleichung B: G(200)=0
- Gleichung C: G'(200)=0
- Gleichung D: G''(200)=0
Aufgabe 4351
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil c
Für Betonrohre des Modells C geht man von einer kubischen Kostenfunktion K aus.
\(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
x |
Produktionsmenge in ME |
K(x) |
Kosten bei der Produktionsmenge x in GE |
- Die Fixkosten betragen 150 GE.
- Bei einer Produktion von 20 ME ergeben sich Kosten von 530 GE.
- Bei einer Produktion von 10 ME ergeben sich Grenzkosten von 17 GE/ME.
- Bei einer Produktion von 30 ME ergeben sich Stückkosten von 22 GE/ME.
1. Teilaufgabe - Bearbeitungszeit 17:00
Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten a, b, c und d.
[3 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie diese Koeffizienten.
[1 Punkt]
Aufgabe 4352
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil d
Der Durchmesser von Betonrohren des Modells D kann als annähernd normalverteilt mit dem Erwartungswert μ = 100 mm angenommen werden. Bei 3 % der Rohre ist der Durchmesser kleiner als 98 mm.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die zugehörige Standardabweichung σ . [1 Punkt]
Aufgabe 4353
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Küchenkauf - Aufgabe B_453
Frau Tomić will eine neue Küche um € 30.000 kaufen.
Teil a
Um sich die Küche leisten zu können, hat sie vor 7 Jahren, vor 4 Jahren und vor 1 Jahr jeweils € 3.000 auf ein Sparbuch mit fixem Zinssatz eingezahlt. Nun befinden sich € 10.000 auf dem Sparbuch.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den zugrunde liegenden Jahreszinssatz.
[1 Punkt]
Bei diesem Sparvorgang wurden jährlich 25 % Kapitalertragssteuer (KESt) abgezogen.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Jahreszinssatz des Sparbuchs vor Abzug der KESt.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4354
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Küchenkauf - Aufgabe B_453
Teil b
Frau Tomić benötigt für den Kauf der Küche einen Kredit in Höhe von € 20.000. Ein Bekannter von Frau Tomić bietet an, ihr das Geld zu einem fixen Zinssatz von 4 % p. a. zu leihen. Für die
Rückzahlung vereinbaren sie, dass am Ende des 1. Semesters nur die Zinsen zu bezahlen sind, danach sind Semesterraten in Hohe von jeweils € 2.000 fällig.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den äquivalenten Semesterzinssatz.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 11:20
Vervollständigen Sie die Zeilen für die Semester 1 und 2 des nachstehenden Tilgungsplans.
[2 Punkte]
Semester | Zinsanteil | Tilgungsanteil | Semesterrate | Restschuld |
0 | --- | --- | --- | € 20.000 |
1 | ||||
2 |
3. Teilaufgabe - Bearbeitungszeit 05:40
Erklären Sie, warum die folgende Behauptung richtig ist: „Eine Verdoppelung der Semesterrate
führt nicht zu einer Verdoppelung des Tilgungsanteils.“
[1 Punkt]
Aufgabe 4355
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Küchenkauf - Aufgabe B_453
Teil c
Für einen Kredit in Höhe von € 20.000 holt Frau Tomić ein Angebot von einer Bank ein. Die Bank schlagt für die Rückzahlung nachschüssige Jahresraten in Höhe von jeweils € 3.000 bei einem Jahreszinssatz i vor.
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie eine Formel zur Berechnung der Restschuld S nach t Jahren.
S =
[1 Punkt]
Aufgabe 4356
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Alkoholfreie Cocktails - Aufgabe B_454
Es gibt viele beliebte Cocktails ohne Alkohol.
Teil a
- Für einen Cocktail Yellow Fun benötigt man 2 Centiliter (cl) Mangosaft, 8 cl Maracujasaft, 2 cl Zitronensaft und 8 cl Pfirsichsaft.
- Für einen Cocktail Exotic Punch benötigt man 4 cl Mangosaft, 4 cl Maracujasaft, 4 cl Ananassaft, 4 cl Grapefruitsaft und 4 cl Orangensaft.
Es sollen x Cocktails Yellow Fun und y Cocktails Exotic Punch hergestellt werden. Insgesamt stehen maximal 2 L Mangosaft und maximal 2 L Maracujasaft zur Verfügung.
1. Teilaufgabe - Bearbeitungszeit 05:40
Ordnen Sie den beiden Einschränkungen jeweils die passende Ungleichung aus A bis D zu.
[2 zu 4] [1 Punkt]
- Einschränkung bezüglich Mangosaft
- Einschränkung bezüglich Maracujasaft
- Gleichung A: \(x + 2 \cdot y \leqslant 100\)
- Gleichung B: \(2 \cdot x + y \leqslant 100\)
- Gleichung C: \(y \leqslant - 2 \cdot x + 50\)
- Gleichung D: \(x + 4 \cdot y \leqslant 200\)
Man rechnet damit, dass mindestens doppelt so viele Cocktails Yellow Fun wie Exotic Punch benötigt werden.
2. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie eine Ungleichung, die diese Bedingung für die beiden Cocktails beschreibt.
[1 Punkt]
Aufgabe 4357
tandardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Alkoholfreie Cocktails - Aufgabe B_454
Es gibt viele beliebte Cocktails ohne Alkohol.
Teil b
Es sollen x Cocktails Targa 911 und y Cocktails Tropic Star zubereitet werden. Folgendes Ungleichungssystem beschreibt die Einschränkungen bei der Zubereitung:
\(\eqalign{ & 6 \cdot x + 8 \cdot y \leqslant 400 \cr & 2 \cdot y \geqslant x \cr & x \geqslant 20 \cr} \)
1. Teilaufgabe - Bearbeitungszeit 11:20
Zeichnen Sie den Lösungsbereich dieses Ungleichungssystems in der nachstehenden Abbildung ein.
[2 Punkte]
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie die Bedeutung der Ungleichung x ≥ 20 im gegebenen Sachzusammenhang.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4358
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Alkoholfreie Cocktails - Aufgabe B_454
Es gibt viele beliebte Cocktails ohne Alkohol.
Teil c
In der nachstehenden Abbildung ist der Lösungsbereich für die Herstellung der Cocktails Augustsüße und Goldener Oktober dargestellt.
Die Produktionskosten für einen Cocktail Goldener Oktober sind um 50 % hoher als die Produktionskosten für einen Cocktail Augustsüße. Die gesamten Produktionskosten sollen minimiert werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie eine mögliche Zielfunktion Z an, die die gesamten Produktionskosten beschreibt.
Z(x, y) =
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie in der obigen Abbildung diejenige Gerade ein, für die im Lösungsbereich der minimale Wert der Zielfunktion angenommen wird.
[1 Punkt]