Österreichische BHS Matura - 2020.05.28 - HUM & HLFS - 3 Teil B Beispiele
Aufgabe 4414
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sozialausgaben - Aufgabe B_481
Sozialausgaben sind Geldleistungen, die der Staat Personen in bestimmten Lebenslagen zur Verfügung stellt.
Teil a
Die Sozialausgaben in Österreich für ausgewählte Jahre im Zeitraum von 1990 bis 2015 sind in der nachstehenden Tabelle angegeben (Werte gerundet).
Jahr | Sozialausgaben in Milliarden € |
1990 | 35,5 |
1995 | 51,0 |
2000 | 59,8 |
2005 | 71,2 |
2010 | 87,8 |
2015 | 102,5 |
Datenquelle: Statistik Austria (Hrsg.): Statistisches Jahrbuch Österreichs 2017. Wien: Verlag Österreich 2016, S. 224.
Die Sozialausgaben sollen in Abhängigkeit von der Zeit t in Jahren ab 1990 näherungsweise durch eine lineare Funktion beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie eine Gleichung der zugehörigen linearen Regressionsfunktion S1. Wählen Sie t = 0 für das Jahr 1990.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie den Wert der Steigung von S1 im gegebenen Sachzusammenhang.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe von S1 eine Prognose für die Sozialausgaben im Jahr 2020.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4415
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sozialausgaben - Aufgabe B_481 & B_482
Sozialausgaben sind Geldleistungen, die der Staat Personen in bestimmten Lebenslagen zur Verfügung stellt.
Teil b
Die Sozialausgaben in Österreich für ausgewählte Jahre im Zeitraum von 1990 bis 2015 sind in der nachstehenden Tabelle angegeben (Werte gerundet).
Jahr | Sozialausgaben in Milliarden € |
1990 | 35,5 |
1995 | 51,0 |
2000 | 59,8 |
2005 | 71,2 |
2010 | 87,8 |
2015 | 102,5 |
Datenquelle: Statistik Austria (Hrsg.): Statistisches Jahrbuch Österreichs 2017. Wien: Verlag Österreich 2016, S. 224.
1. Teilaufgabe - Bearbeitungszeit 5:40
(nur HAK)
Interpretieren Sie das Ergebnis der nachstehenden Berechnung im gegebenen Sachzusammenhang:
\(\root 5 \of {\dfrac{{87,8}}{{71,2}}} - 1 \approx 0,043\)
Eine Sozialwissenschaftlerin geht von der Annahme aus, dass die Sozialausgaben in Österreich seit dem Jahr 2015 jährlich um 2,5 % bezogen auf das jeweilige Vorjahr steigen. Dieses Modell soll durch eine Funktion S2 beschrieben werden.
t | Zeit ab 2015 in Jahren |
S2(t) | Sozialausgaben zur Zeit t in Milliarden Euro |
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der Funktion S2.
Wählen Sie t = 0 für das Jahr 2015.
[1 Punkt]
Aufgabe 4416
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sozialausgaben - Aufgabe B_481
Sozialausgaben sind Geldleistungen, die der Staat Personen in bestimmten Lebenslagen zur Verfügung stellt.
Teil c
In der nachstehenden Abbildung sind das Bruttoinlandsprodukt und die Sozialausgaben Österreichs für den Zeitraum von 1990 bis 2015 dargestellt. Weiters ist die Regressionsgerade für das Bruttoinlandsprodukt für diesen Zeitraum eingezeichnet.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Wert der Steigung der Regressionsgeraden für das Bruttoinlandsprodukt.
[1 Punkt]
Die Sozialquote ist das Verhältnis der Sozialausgaben zum Bruttoinlandsprodukt.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Sozialquote für das Jahr 2015.
[1 Punkt]
Aufgabe 4417
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sozialausgaben - Aufgabe B_481
Sozialausgaben sind Geldleistungen, die der Staat Personen in bestimmten Lebenslagen zur Verfügung stellt.
Teil d
Die Verteilung der Sozialausgaben von insgesamt 102,5 Milliarden Euro für das Jahr 2015 ist in der nachstehenden Abbildung dargestellt. Der Bereich „Familie / Kinder“ ist markiert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Betrag, der im Jahr 2015 für den Bereich „Familie / Kinder“ ausgegeben worden ist.
[1 Punkt]
Aufgabe 4418
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil a
Die Kosten bei der Produktion des Fruchtsafts Mangomix können durch eine ertragsgesetzliche Kostenfunktion K beschrieben werden:
\(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + 105 \cdot x + 1215\)
x | Produktionsmenge in hl |
K(x) | Kosten bei der Produktionsmenge x in € |
Von der Kostenfunktion ist bekannt:
- I: Die Grenzkosten bei einer Produktionsmenge von 25 hl betragen 30 €/hl.
- II: K″(25) = 0
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung, die die Bedingung I beschreibt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung der Zahl 25 in der Gleichung II im gegebenen Sachzusammenhang.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Koeffizienten a und b.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4419
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil b
In der nachstehenden Abbildung sind die Graphen der Grenzkostenfunktion K′, der Durchschnittskostenfunktion K und der variablen Durchschnittskostenfunktion Kv für den Fruchtsaft Mangomix dargestellt. Vier Produktionsmengen, xA bis xD, sind auf der horizontalen Achse markiert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Begriffen jeweils die zutreffende Produktionsmenge aus A bis D zu.
[2 zu 4] [1 Punkt]
- Begriff: Kostenkehre
- Begriff: Betriebsminimum
- Produktionsmenge A: xA
- Produktionsmenge B: xB
- Produktionsmenge C: xC
- Produktionsmenge D: xD
Aufgabe 4420
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil c
Der Erlös beim Verkauf des Fruchtsafts Mangomix kann durch eine quadratische Funktion E beschrieben werden:
\(E\left( x \right) = a \cdot {x^2} + b \cdot x{\text{ mit }}x \geqslant 0\)
x |
|
E(x) |
|
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht.
[Lückentext] [1 Punkt]
Der Koeffizient a muss ____1____ sein, weil der Graph von E ____2____ .
- Satzteil 1.1: positiv
- Satzteil 1.2: negativ
- Satzteil 1.3: gleich null
- Satzteil 2.1: durch den Ursprung geht
- Satzteil 2.2: keinen Wendepunkt hat
- Satzteil 2.3: nach unten geöffnet ist
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass der maximale Erlös bei der Absatzmenge
\({x_0} = - \dfrac{b}{{2 \cdot a}}\)
erzielt wird.
[1 Punkt]
Aufgabe 4421
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil d
Der Grenzgewinn für den Fruchtsaft Mangomix kann durch die Funktion G′ beschrieben werden:
\(G'\left( x \right) = - 0,12 \cdot {x^2} - 4 \cdot x + 220\)
x |
Absatzmenge in hl |
G'(x) | Grenzgewinn bei der Absatzmenge x in €/hl |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie diejenige Absatzmenge, bei der der maximale Gewinn erzielt wird.
[1 Punkt]
Die Fixkosten betragen 1.215 €.
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Gewinnfunktion G unter Berücksichtigung der Fixkosten.
[1 Punkt]
Es soll derjenige Bereich für die Absatzmenge ermittelt werden, in dem der Gewinn mindestens 1.000 € betragt.
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie diesen Bereich.
[1 Punkt]
Aufgabe 4422
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lagerhalle - Aufgabe B_484
Für den Kauf einer Lagerhalle benötigt ein Unternehmen € 180.000. Es werden verschiedene Möglichkeiten für die Finanzierung überprüft.
Teil a
Das Unternehmen konnte in den vergangenen Jahren Rücklagen bilden, die mit einem positiven jährlichen Zinssatz i verzinst werden: Vor 4 Jahren konnte das Unternehmen € 50.000 zurücklegen, vor 3 Jahren konnte es € 70.000 zurücklegen. Es soll derjenige Betrag X ermittelt werden, der für den Kauf der Lagerhalle heute noch fehlt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung des Betrags X.
X =
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag X für den Zinssatz i = 2,5 % p. a.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4423
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lagerhalle - Aufgabe B_484
Für den Kauf einer Lagerhalle benötigt ein Unternehmen € 180.000. Es werden verschiedene Möglichkeiten für die Finanzierung überprüft.
Teil b
Das Unternehmen kann den Kauf der Lagerhalle mit einem Kredit in Höhe von € 180.000 finanzieren. Der Kredit soll durch 40 nachschüssige Quartalsraten bei einem Zinssatz von 1 % p. q. getilgt werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Höhe einer Quartalsrate.
[1 Punkt]
Aufgabe 4424
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lagerhalle - Aufgabe B_484
Für den Kauf einer Lagerhalle benötigt ein Unternehmen € 180.000. Es werden verschiedene Möglichkeiten für die Finanzierung überprüft.
Teil c
Ein anderes Kreditangebot enthält Sonderkonditionen für die Jahre 1 und 2. Diese Sonderkonditionen können dem Tilgungsplan entnommen werden:
Jahr | Zinsanteil | Tilgungsanteil | Annuität | Restschuld |
0 | € 180.000 | |||
1 | € 5.400 | € -5.400 | € 0 | € 185.400 |
2 | € 5.563 | € 180.000 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Jahreszinssatz für dieses Kreditangebot.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie mithilfe der Eintrage im Tilgungsplan, warum der Tilgungsanteil im Jahr 1 negativ ist. [1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie die Zeile für das Jahr 2 im obigen Tilgungsplan.
[1 Punkt]