Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Beschreibende Statistik

Beschreibende Statistik

Zum Schlagwort passende, original Teil A und Teil B Aufgaben, aus ehemaligen BHS bzw. BRP Maturaterminen, aus dem Fach Angewandte Mathematik.

Hier findest du folgende Inhalte

2
Formeln
29
Aufgaben
    Formeln
    Wissenspfad
    Aufgaben

    Beschreibende bzw. deskriptive Statistik

    Die beschreibende bzw. deskriptive Statistik stellt große Datenmengen (Vollerhebung, Grundgesamtheit) übersichtlich dar und verdichtet diese, damit charakteristische Eigenschaften der Datenmenge durch einfache Kennzahlen ausgedrückt werden können. Bei den statistischen Kennzahlen unterscheidet man zwischen Lage- und Streumaßen


    Lagemaße:

    Die Lagemaße geben Auskunft zur zentralen Tendenz, darüber wo sich die Werte konzentrieren.

    • Modalwert = Modus
    • Arithmetisches Mittel
    • Gewichtetes / gewogenes arithmetisches Mittel
    • Geometrisches Mittel
    • Median =Zentralwert
    • Quantil

    Streuungsmaße:

    Die Steuungsmaße geben Auskunft über die Breite der Verteilung, also zur Variabilität der Werte.

    • Spannweite
    • Lineare Abweichung
    • Varianz
    • Standardabweichung
    Beschreibende Statistik
    Geometrisches Mittel
    Median
    Spannweite
    Lineare Abweichung
    Empirische Varianz
    Standardabweichung
    Lagemaße
    Streuungsmaße
    Arithmetisches Mittel
    statistische Kennzahlen
    Quantile
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(5,149,183)
    Bild
    Illustration Strandliegen 1050x450
    Startseite
    Wissenspfad
    Aufgaben

    Datenerhebung für statistische Aussagen

    Bei der Datenerhebung für statistische Aussagen hat sich folgende Terminologie etabliert:


    statistische Einheit

    Eine statistische Einheit, auch Erhebungseinheit genannt, ist ein einzelnes Element der Grundgesamtheit (z.B. Herr Max Mustermann).


    Grundgesamtheit G

    Die Grundgesamtheit G ist die Menge aller Elemente / aller Erhebungseinheiten, auf die sich eine statistische Auswertung bezieht. (z.B.: Alle Österreicher)


    Stichprobe

    Die Stichprobe ist eine repräsentative Teilmenge, die der Grundgesamtheit zufällig entnommen wurde. (z.B.: 20 zufällig ausgewählte Österreicher). Sie gilt als repräsentativ, wenn sie die typischen Merkmale der Grundgesamtheit repräsentiert.


    Stichprobenumfang n

    Der Umfang n der Stichprobe entspricht der Anzahl der erhobenen Einheiten. Der Stichprobenumfang soll so gewählt werden, dass lediglich eine möglichst kleine Teilmenge der Grundgesamtheit zu untersuchen ist, die Aussagen aber dennoch für die Grundgesamtheit repräsentativ sind.


    Merkmal X, Y

    Ein Merkmal X, Y ist jene Eigenschaft der statistischen Einheit, die untersucht werden soll (z.B.: die Körpergröße, Geschlecht). Bei einer Erhebung entspricht einem Merkmal eine Frage. (z.B.: Wie groß sind Sie?,...) Merkmale nehmen unterschiedliche Merkmalsausprägungen an.


    Nominales Merkmal

    Ein nominales Merkmal ist ein konkret benennbares qualitatives Merkmal (z.B.: Rindsschnitzel, Schweinsschnitzel, Hühnerschnitzel,...)


    Ordinales Merkmal

    Ein ordinales Merkmal entspricht einem Rang in einer Ordnung (z.B.: Schulnoten 1 .. 5)


    Metrisches Merkmal

    Ein metrisches Merkmal ist ein quantitatives Merkmal, von dem es ein Bezugsmaß und Vielfache oder Teiler gibt. (z.B.: die PS-Zahl eines Fahrzeugs: 0,1PS, 1PS, 100PS)


    Merkmalsausprägung x1, x2,..., y1, y2,...

    Eine Merkmalsausprägung x1, x2, x3 …x1, x2, x3 … ist eine ganz bestimmte Eigenschaft, die eines der Merkmale X, Y annehmen kann. Durch eine Messung wird eine Merkmalsausprägung einem Skalenwert zugeordnet. Die Merkmalsausprägung ist der gemessene Wert vom Merkmal (z.B.: X1=180 cm, Y1=männlich). Bei einer Erhebung entspricht die Merkmalsausprägung einer tatsächlich gegebenen Antwort auf die Frage nach dem Merkmal. (z.B.: Ich bin 1,80 m groß)


    Stetiges Merkmal

    Ein stetiges Merkmal liegt vor, wenn die Merkmalsausprägung jeden Wert innerhalb eines Intervalls annehmen kann (z.B.: 180,1cm, 180,15cm, 180,157cm,...)


    Diskretes Merkmal

    Ein diskretes Merkmal liegt vor, wenn die Merkmalsausprägung nur bestimmte Werte annehmen kann (z.B.: männlich, weiblich, divers)


    Nullhypothese H0

    Eine Hypothese ist eine Aussage über den Zusammenhang von mindestens zwei Merkmalen einer statistischen Beobachtung, die über das aktuelle Wissen hinaus geht und eine Vermutung beinhaltet, die oft nicht direkt belegt werden kann.

    Beim Test einer Hypothese stellt man eine Nullhypothese H0 und eine Gegenhypothese H1 dazu auf.

    Die Nullhypothese H0, ist eine Annahme in einem  Hypothesentest die besagt, dass es keinen signifikanten Zusammenhang zwischen untersuchten Variablen gibt. Sie wird aufgestellt, um zu prüfen, ob es ausreichende Beweise gibt, um sie abzulehnen um dann die Alternativhypothese, die sehr wohl einen signifikanten Zusammenhang zwischen untersuchten Variablen postuliert, zu akzeptieren.

    Dann muss ein Signifikanzniveau \(\alpha\) dafür vorgegeben sein, dass man die Nullhypothese irrtümlich verwirft, obwohl sie zutreffen ist. Ein typisches Signifikanzniveau ist 0,05 (5%). Wenn das Ergebnis vom Hypothesentest einen p-Wert kleiner als das Signifikanzniveau ergibt, lehnt man die Nullhypothese ab.

     

    Beim Hypothesentest unterscheidet man: 

    • Fehler 1. Art: Man verwirft die Nullhypothese irrtümlich, obwohl sie zutrifft und akzeptiert die (falsche) Gegenhypothese. Man schützt sich vor einem Fehler 1. Art, indem man das Signifikanzniveau absenkt.
    • Fehler 2. Art: Man hält an der Nullhypothese fest, obwohl sie nicht zutrifft. Man kann die Wahrscheinlichkeit für einen Fehler 2. Art minimieren, indem man eine ausreichend große Stichprobe verwendet.

     


    Kumulative Verteilungsfunktion

    Die kumulative Verteilungsfunktion einer binomialverteilten Zufallsvariablen gibt die Wahrscheinlichkeit an, dass die Zufallsvariable X einen Wert kleiner oder gleich einem bestimmten Wert annimmt. Die kumulative Verteilungsfunktion einer binomialverteilten Zufallsvariablen kann verwendet werden, um Wahrscheinlichkeiten von Ereignissen zu bestimmen, wie zum Beispiel die Wahrscheinlichkeit, dass die Anzahl der Erfolge kleiner oder gleich einer bestimmten Zahl ist oder, dass die Anzahl der Erfolge innerhalb eines bestimmten Intervalls liegt. Die Wahrscheinlichkeit für einen Erfolg wird als p bezeichnet und die Anzahl der Versuche als n.

    Für die kumulative Verteilungsfunktion einer nach B(n, p) binomialverteilten Zufallsvariablen gilt:
    \(F_p^n\left( k \right) = P_p^n\left( {X \le k} \right) = \sum\limits_{i = 0}^k {B\left( {n;p;i} \right) = \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right)} } \cdot {p^i} \cdot {\left( {1 - p} \right)^{n - i}}\)

    Die Berechnung ist zeitaufwändig, weshalb man die Wahrscheinlichkeit aus einer Statistiktabelle herausliest oder mittels Software ermittelt.


    Schließende Statistik

    Die schließende Statistik ermöglicht es von einer (kleinen) Stichprobe auf die (große) Grundgesamtheit G zu schließen.


    Beschreibende Statistik

    Die beschreibende Statistik beschreibt die Grundgesamtheit einer Vollerhebung durch charakteristische Kennzahlen (Lage- und Streumaße)


    Explorative Statistik

    Die explorative Statistik beschäftigt sich mit der Analyse großer Datenmengen, wobei vor der Analyse keine Zusammenhänge zwischen den einzelnen Daten bekannt sind.

    Grundgesamtheit G
    Statistische Einheit
    Merkmal (Statistik)
    Merkmalsausprägung
    Schließende Statistik
    Beschreibende Statistik
    Skalen verschiedener Merkmalsausprägungen
    Stichprobe
    Stichprobenumfang
    diskretes Merkmal
    Nullhypothese
    nominales Merkmal
    stetiges Merkmal
    Fehler 1. Art Hypothesentest
    Fehler 2. Art Hypothesentest
    Kumulative Verteilungsfunktion einer binomial verteilten Zufallsvariablen
    Fragen oder Feedback
    Aufgaben
    LösungswegBeat the Clock

    Aufgabe 4001

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Vergnügungspark - Aufgabe A_249

    Teil b
    In einem Vergnügungspark werden Familien nach ihren Ausgaben befragt. Die beiden nachstehenden Boxplots veranschaulichen die Ausgaben der befragten Familien für die Attraktionen und jene für Essen und Getränke.

    • Attraktionen: Ausgaben pro befragter Familie in €
      Zahl a Zahl a: Boxplot(1, 0.5, 0, 10, 15, 20, 80) Zahl a Zahl a: Boxplot(1, 0.5, 0, 10, 15, 20, 80)
    • Essen und Getränke: Ausgaben pro befragter Familie in €
      Zahl a Zahl a: Boxplot(1, 0.5, 0, 15, 25, 30, 40) Zahl a Zahl a: Boxplot(1, 0.5, 0, 15, 25, 30, 40)

    Andreas behauptet, aus den beiden Boxplots Folgendes ablesen zu können: „Es gibt mit Sicherheit mindestens eine Familie, die insgesamt 120 Euro für Attraktionen sowie Essen und Getränke ausgibt.“


    1. Teilaufgabe - Bearbeitungszeit 5:40

    Argumentieren Sie, dass die Behauptung von Andreas falsch ist. [1 Punkt]

    Vergnügungspark - Aufgabe A_249
    Boxplot
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Beschreibende Statistik
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(5,149,183)
    Bild
    Illustration Strandliegen 1050x450
    Startseite
    LösungswegBeat the Clock

    Aufgabe 4011

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Rohmilchproduktion - Aufgabe A_252

    Teil b
    In der nachstehenden Tabelle ist die durchschnittliche Jahresmilchleistung pro Kuh in Kilogramm (kg) für einige ausgewählte europäische Länder im Jahr 2012 angegeben.

    Land durchschnittliche Jahresmilchleistung pro Kuh in kg
    Deutschland 7 280
    Dänemark 8 701
    Italien 5 650
    Österreich 6 418
    Rumänien 3 429
    Slowakei 6 501
    Tschechien 7 705
    Ungarn 7 184

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Ermitteln Sie, um wie viel Prozent die durchschnittliche Jahresmilchleistung pro Kuh in Dänemark höher als jene in Rumänien war.
    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40
    Diese Daten sind, mit Ausnahme der durchschnittlichen Jahresmilchleistung pro Kuh in Tschechien, im nachstehenden Diagramm dargestellt.
    Zeichnen Sie im folgenden Diagramm die fehlende Säule für Tschechien ein.
    [1 Punkt]

    Viereck poly1 Viereck poly1: Polygon (0.5, 0), (1, 0), (1, 7280), (0.5, 7280) Viereck poly2 Viereck poly2: Polygon (1.5, 0), (2, 0), (2, 8701), (1.5, 8701) Viereck poly3 Viereck poly3: Polygon (2.5, 0), (3, 0), (3, 5650), (2.5, 5650) Viereck poly4 Viereck poly4: Polygon (3.5, 0), (4, 0), (4, 6418), (3.5, 6418) Viereck poly5 Viereck poly5: Polygon (4.5, 0), (5, 0), (5, 3429), (4.5, 3429) Viereck poly6 Viereck poly6: Polygon (5.5, 0), (6, 0), (6, 6501), (5.5, 6501) Viereck poly8 Viereck poly8: Polygon (7.5, 0), (8, 0), (8, 7184), (7.5, 7184) Strecke f Strecke f: Strecke (0.5, 0), (1, 0) Strecke g Strecke g: Strecke (1, 0), (1, 7280) Strecke h Strecke h: Strecke (1, 7280), (0.5, 7280) Strecke i Strecke i: Strecke (0.5, 7280), (0.5, 0) Strecke j Strecke j: Strecke (1.5, 0), (2, 0) Strecke k Strecke k: Strecke (2, 0), (2, 8701) Strecke l Strecke l: Strecke (2, 8701), (1.5, 8701) Strecke m Strecke m: Strecke (1.5, 8701), (1.5, 0) Strecke n Strecke n: Strecke (2.5, 0), (3, 0) Strecke p Strecke p: Strecke (3, 0), (3, 5650) Strecke q Strecke q: Strecke (3, 5650), (2.5, 5650) Strecke r Strecke r: Strecke (2.5, 5650), (2.5, 0) Strecke s Strecke s: Strecke (3.5, 0), (4, 0) Strecke t Strecke t: Strecke (4, 0), (4, 6418) Strecke a Strecke a: Strecke (4, 6418), (3.5, 6418) Strecke b Strecke b: Strecke (3.5, 6418), (3.5, 0) Strecke c Strecke c: Strecke (4.5, 0), (5, 0) Strecke d Strecke d: Strecke (5, 0), (5, 3429) Strecke e Strecke e: Strecke (5, 3429), (4.5, 3429) Strecke f_1 Strecke f_1: Strecke (4.5, 3429), (4.5, 0) Strecke g_1 Strecke g_1: Strecke (5.5, 0), (6, 0) Strecke h_1 Strecke h_1: Strecke (6, 0), (6, 6501) Strecke i_1 Strecke i_1: Strecke (6, 6501), (5.5, 6501) Strecke j_1 Strecke j_1: Strecke (5.5, 6501), (5.5, 0) Strecke p_1 Strecke p_1: Strecke (7.5, 0), (8, 0) Strecke q_1 Strecke q_1: Strecke (8, 0), (8, 7184) Strecke r_1 Strecke r_1: Strecke (8, 7184), (7.5, 7184) Strecke s_1 Strecke s_1: Strecke (7.5, 7184), (7.5, 0) Deutschland text1 = “Deutschland” Dänemark text2 = “Dänemark” Italien text3 = “Italien” Österreich text4 = “Österreich” Rumänlen text5 = “Rumänlen” Slowakel text6 = “Slowakel” Tschechlen text7 = “Tschechlen” Ungam text8 = “Ungam”

    Rohmilchproduktion - Aufgabe A_252
    Prozentuelle Änderung
    Säulendiagramm
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Beschreibende Statistik
    Prozente und Promille
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.1
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.5
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.2
    Lineare Funktionen
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 4076

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind

    Pizzalieferdienst - Aufgabe A_264

    Teil a

    Eine Pizzeria liefert Pizzen auf Bestellung aus. Die Kunden sollen möglichst schnell beliefert werden, damit die Pizzen bei der Zustellung noch heiß sind. Für 100 Pizzen wurden die Zustellzeiten erhoben und in 6 Klassen eingeteilt:

    Klasse Zustellzeit in Minuten Klassenmitte absolute Häufigkeit
    1 [0; 10[ 5 4
    2 [10; 20[ 15 48
    3 [20; 30[ 25 27
    4 [30; 40[ 35 11
    5 [40; 50[ 45 5
    6 [50; 60[ 55 5

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Geben Sie an, in welcher Klasse der Median der Zustellzeiten liegt.
    [1 Punkt]


    Mithilfe der Klassenmitten können das arithmetische Mittel \(\overline x \) und die Standardabweichung s der Zustellzeiten näherungsweise berechnet werden. Es gilt: \(\overline x \) = 23 min

    • Aussage 1: \(\sqrt {\dfrac{{\left( {5 - 23} \right) + \left( {15 - 23} \right) + \left( {25 - 23} \right) + \left( {35 - 23} \right) + \left( {45 - 23} \right) + \left( {55 - 23} \right)}}{6}} \)
    • Aussage 2: \(\sqrt {\dfrac{{{{\left( {5 - 23} \right)}^2} + {{\left( {15 - 23} \right)}^2} + {{\left( {25 - 23} \right)}^2} + {{\left( {35 - 23} \right)}^2} + {{\left( {45 - 23} \right)}^2} + {{\left( {55 - 23} \right)}^2}}}{6}} \)
    • Aussage 3: \(\sqrt {\dfrac{{{{\left( {5 - 23} \right)}^2} \cdot 4 + {{\left( {15 - 23} \right)}^2} \cdot 48 + {{\left( {25 - 23} \right)}^2} \cdot 27 + {{\left( {35 - 23} \right)}^2} \cdot 11 + {{\left( {45 - 23} \right)}^2} \cdot 5 + {{\left( {55 - 23} \right)}^2} \cdot 5}}{6}} \)
    • Aussage 4: \(\sqrt {\dfrac{{{{\left( {5 - 23} \right)}^2} \cdot 4 + {{\left( {15 - 23} \right)}^2} \cdot 48 + {{\left( {25 - 23} \right)}^2} \cdot 27 + {{\left( {35 - 23} \right)}^2} \cdot 11 + {{\left( {45 - 23} \right)}^2} \cdot 5 + {{\left( {55 - 23} \right)}^2} \cdot 5}}{{100}}} \)
    • Aussage 5: \(\sqrt {\dfrac{{{{\left( {5 - 23} \right)}^2} \cdot 5 + {{\left( {15 - 23} \right)}^2} \cdot 15 + {{\left( {25 - 23} \right)}^2} \cdot 25 + {{\left( {35 - 23} \right)}^2} \cdot 35 + {{\left( {45 - 23} \right)}^2} \cdot 45 + {{\left( {55 - 23} \right)}^2} \cdot 55}}{{100}}} \)

    2. Teilaufgabe - Bearbeitungszeit 5:40
    Kreuzen Sie denjenigen Ausdruck an, mit dem die zugehörige Standardabweichung s der Zustellzeiten berechnet werden kann.
    [1 aus 5] [1 Punkt]

    Pizzalieferdienst - Aufgabe A_264
    Median
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2018 - kostenlos vorgerechnet
    Beschreibende Statistik
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 4077

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Pizzalieferdienst - Aufgabe A_264

    Teil b

    Bei einer statistischen Erhebung wurde die Temperatur der gelieferten Pizzen untersucht. Die erhobenen Daten sind im folgenden Boxplot dargestellt:
    Zahl a Zahl a: Boxplot(10, 5, 27, 41, 48, 52, 63) Zahl a Zahl a: Boxplot(10, 5, 27, 41, 48, 52, 63) Temperatur in °C Text1 = “Temperatur in °C”

    Es wird auf Basis dieses Boxplots behauptet: „Mindestens 80 % der gelieferten Pizzen haben eine Temperatur von über 45 °C.“

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Argumentieren Sie anhand des obigen Boxplots, dass diese Behauptung falsch ist.
    [1 Punkt]

    Pizzalieferdienst - Aufgabe A_264
    Boxplot
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2018 - kostenlos vorgerechnet
    Beschreibende Statistik
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4158

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Die Adria-Wien-Pipeline - Aufgabe A_280

    Österreich muss einen Großteil seines Erdölbedarfs durch Importe von Rohöl decken. Diese Importe werden vorwiegend über die Adria-Wien-Pipeline durchgeführt, die von Triest nach Wien-Schwechat führt.

    Teil a

    Die folgende Tabelle gibt die nach Österreich importierten Rohölmengen in den Jahren 2006 bis 2014 an:

    Jahr 2006 2007 2008 2009 2010 2011 2012 2013 2014
    importierte
    Rohölmenge
    in Mio. t
    7,7 7,6 7,9 7,4 6,8 7,3 7,4 7,8 7,5

    Quelle: https://www.wko.at/branchen/industrie/mineraloelindustrie/jahresberichte.html
    [22.11.2018]


    1. Teilaufgabe - Bearbeitungszeit 5:40

    Ermitteln Sie das arithmetische Mittel und die Standardabweichung der importierten Rohölmengen für diesen Zeitraum in Millionen Tonnen.

    [1 Punkt]

    Die Adria-Wien-Pipeline - Aufgabe A_280
    Geogebra Standardabweichung
    Arithmetisches Mittel
    Standardabweichung
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2019 - kostenlos vorgerechnet
    Beschreibende Statistik
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(5,149,183)
    Bild
    Illustration Strandliegen 1050x450
    Startseite
    Lösungsweg

    Aufgabe 4169

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Bahnverkehr in Österreich - Aufgabe A_283

    Teil c

    Im nachstehenden Diagramm sind die Fahrgastzahlen der Österreichischen Bundesbahnen für die Jahre 2010 bis 2014 dargestellt.

    Bild
    beispiel_4169_1

    Datenquelle: Agentur für Passagier- und Fahrgastrechte (Hrsg.): Fahrgastrechte-Statistik Bahn 2014, 2016, S. 4.
    https://www.apf.gv.at/files/1-apf-Homepage/1g-Publikationen/Fahrgastrec… [22.11.2018].


    1. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie die Spannweite der angegebenen Fahrgastzahlen in Millionen.

    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Es wird folgende Berechnung durchgeführt:
    \(\dfrac{{235,1 - 209,8}}{{209,8}} \approx 0,12\)

    Interpretieren Sie das Ergebnis dieser Berechnung im gegebenen Sachzusammenhang.

    [1 Punkt]

    Bahnverkehr in Österreich - Aufgabe A_283
    Geogebra Säulendiagramm Befehl
    Spannweite
    Relative Änderung
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2019 - kostenlos vorgerechnet
    Beschreibende Statistik
    Änderungsmaße
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.5
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4173

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Mathematik-Olympiade - Aufgabe A_066

    Die Mathematik-Olympiade ist ein bekannter Wettbewerb für Schüler/innen.

    Teil a

    Beim Bundeswettbewerb der Mathematik-Olympiade kann man im ersten Teil maximal 32 Punkte erreichen. Die nachstehenden Boxplots zeigen die erreichte Punkteanzahl der Teilnehmer/innen im Jahr 2014 und im Jahr 2015.

    Bild
    beispiel_4173_1

    Lara hat in beiden Jahren beim Bundeswettbewerb teilgenommen. Im Jahr 2014 hat sie 29 Punkte erreicht, im Jahr 2015 waren es 18 Punkte.


    1. Teilaufgabe - Bearbeitungszeit 5:40

    Argumentieren Sie, dass Lara im Jahr 2015 im Vergleich zu den anderen Teilnehmerinnen und Teilnehmern ein besseres Ergebnis als im Jahr 2014 erzielt hat.

    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Kreuzen Sie die nicht zutreffende Aussage an.

    [1 aus 5] [1 Punkt]

    • Aussage 1: Der Interquartilsabstand im Jahr 2014 ist mehr als doppelt so groß wie der Interquartilsabstand im Jahr 2015.
    • Aussage 2: Im Jahr 2015 erreichten mindestens 75 % der Teilnehmer/innen mindestens 17 Punkte.
    • Aussage 3: Die Spannweite im Jahr 2015 ist um rund 17 % kleiner als die Spannweite im Jahr 2014.
    • Aussage 4: Im Jahr 2015 ist der Median um 10,5 Punkte kleiner als im Jahr 2014.
    • Aussage 5: Im Jahr 2015 erreichten mindestens 75 % der Teilnehmer/innen maximal 17 Punkte.
    Mathematik-Olympiade - Aufgabe A_066
    Boxplot
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - September 2019 - kostenlos vorgerechnet
    Beschreibende Statistik
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4174

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Mathematik-Olympiade - Aufgabe A_066

    Die Mathematik-Olympiade ist ein bekannter Wettbewerb für Schüler/innen.

    Teil b

    8 Jugendliche haben am Bundeswettbewerb der Mathematik-Olympiade teilgenommen. Sie möchten das arithmetische Mittel und die Standardabweichung ihrer erreichten Punkteanzahlen

    berechnen. Für die Varianz s2 ergibt sich die nachstehende Berechnung.
    \({s^2} = \frac{1}{8} \cdot \left( {{{\left( {16 - 16} \right)}^2} + {{\left( {22 - 16} \right)}^2} + {{\left( {21 - 16} \right)}^2} + {{\left( {30 - 16} \right)}^2} + {{\left( {4 - 16} \right)}^2} + {{\left( {11 - 16} \right)}^2} + {{\left( {9 - 16} \right)}^2} + {{\left( {15 - 16} \right)}^2}} \right)\)


    1. Teilaufgabe - Bearbeitungszeit 5:40

     Lesen Sie aus der obigen Berechnung das arithmetische Mittel ab.
    [1 Punkt]

    Mathematik-Olympiade - Aufgabe A_066
    Arithmetisches Mittel
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - September 2019 - kostenlos vorgerechnet
    Beschreibende Statistik
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4246

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Pflanzenwachstum - Aufgabe A_292

    Teil b

    Die Höhe der Pflanzen einer bestimmten Pflanzenart wird untersucht, wobei einige der Pflanzen regelmäßig gedüngt werden und die anderen nicht. Nach einer bestimmten Zeit werden die Höhen aller beobachteten Pflanzen gemessen. Der Boxplot für die Höhen der nicht gedüngten Pflanzen ist im unten stehenden Diagramm dargestellt.

    Für die Höhen der gedüngten Pflanzen gilt:

    • Minimum: 19 cm
    • 1. Quartil: 21 cm
    • Median: 25 cm
    • Interquartilsabstand: 6 cm
    • Spannweite: 16 cm

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Zeichnen Sie im nachstehenden Diagramm den Boxplot für die Höhen der gedüngten Pflanzen ein.

    Bild
    beispiel_4146_1

    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Aus dem Boxplot für die Höhen der nicht gedüngten Pflanzen kann Folgendes abgelesen werden: Mindestens ein Viertel der Pflanzen hat eine Höhe kleiner als oder gleich einem Wert a, und zugleich haben mindestens drei Viertel der Pflanzen eine Höhe größer als oder gleich diesem Wert a. Geben Sie diesen Wert a an.

    a = cm
    [1 Punkt]

    Pflanzenwachstum - Aufgabe A_292
    Boxplot
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - September 2020 - kostenlos vorgerechnet
    Beschreibende Statistik
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(5,149,183)
    Bild
    Illustration Strandliegen 1050x450
    Startseite
    Lösungsweg

    Aufgabe 4249

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 12. Jänner 2021 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Sicherheit auf dem Schulweg - Aufgabe A_293

    Im Nahbereich von Schulen stellen die zu- und abfahrenden Fahrzeuge ein großes Problem dar.

    Teil b

    Vor einer Schule wurden über einen Zeitraum von einer Woche Geschwindigkeitsmessungen durchgeführt. 2 958 Fahrzeuge, das sind 85 % aller kontrollierten Fahrzeuge, fuhren langsamer

    als 33 km/h.


    1. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie, wie viele Fahrzeuge in dieser Woche insgesamt kontrolliert wurden.

    [1 Punkt]


    Die Ergebnisse dieser Geschwindigkeitsmessungen sollen in einem Boxplot dargestellt werden.

    2. Teilaufgabe - Bearbeitungszeit 5:40

    Erklären Sie, warum für diesen Boxplot die Aussage „Das Quartil Q3 beträgt 35 km/h“ nicht richtig sein kann.

    [1 Punkt]

    Sicherheit auf dem Schulweg - Aufgabe A_293
    Proportionale Zuordnung
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Jänner 2021 - kostenlos vorgerechnet
    Prozente und Promille
    Beschreibende Statistik
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.5
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4254

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 12. Jänner 2021 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Niederschlagsmessung - Aufgabe A_295

    Teil a

    An einem bestimmten Ort wurde an jedem Tag eines bestimmten Monats die Niederschlagshöhe gemessen. In der nachstehenden Abbildung sind die gesammelten Daten als Boxplot dargestellt.

    Bild
    beispiel_4254_1

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Kreuzen Sie die zutreffende Aussage an. [1 aus 5]

    [1 Punkt]

    • Aussage 1: An jedem Tag dieses Monats gab es Niederschlag.
    • Aussage 2: An 3/4 aller Tage dieses Monats betrug die Niederschlagshöhe höchstens 15 mm.
    • Aussage 3: An über 50 % aller Tage dieses Monats betrug die Niederschlagshöhe mehr als 20 mm.
    • Aussage 4: An mindestens 25 % aller Tage dieses Monats hat es keinen Niederschlag gegeben.
    • Aussage 5: An 75 % aller Tage dieses Monats betrug die Niederschlagshöhe mehr als 20 mm.
    Niederschlagsmessung - Aufgabe A_295
    Boxplot
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Jänner 2021 - kostenlos vorgerechnet
    Beschreibende Statistik
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4309

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Farbenfrohe Gummibären - Aufgabe A_157

    Gummibären werden in 5 unterschiedlichen Farben bzw. 6 unterschiedlichen Geschmacksrichtungen hergestellt: rot (Himbeere und Erdbeere), gelb (Zitrone), grün (Apfel), orange (Orange) und weiß (Ananas).

    Teil a

    Die nach stehende Tabelle enthält eine Auflistung, wie viele weiße Gummibären in den untersuchten Packungen waren.

    Anzahl weißer Gummibären pro Packung 17 20 21 22 24
    Anzahl der Packungen 2 3 3 1 4

     

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie das arithmetische Mittel der Anzahlen weißer Gummibären pro Packung.

    [1 Punkt]

    Farbenfrohe Gummibären - Aufgabe A_157
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2015 - kostenlos vorgerechnet
    Arithmetisches Mittel
    Beschreibende Statistik
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.2
    Fragen oder Feedback

    Seitennummerierung

    • Aktuelle Seite 1
    • Page 2
    • Page 3
    • Nächste Seite
    • Letzte Seite

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Laptop
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH