Headerbar Werbung für Region "nicht-DACH"
Österreichische BHS Matura - 2021.09.17 - HTL1 - 3 Teil B Beispiele
Aufgabe 4492
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Tunnelvortrieb - Aufgabe B_521
Für eine Eisenbahnstrecke wird ein Tunnel gegraben.
Teil a
In der nachstehenden Abbildung ist eine bestimmte Baggerposition dargestellt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Veranschaulichen Sie in Abbildung 2 diejenige Länge s, die durch den nachstehenden Ausdruck berechnet werden kann.
\(s = a \cdot \cos \left( \alpha \right)\)
[0 / 1 P.]
Es gilt:
- a = 4,65 m
- b = 4,50 m
- β = 110°
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Länge d.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die richtige Formel zur Berechnung des Winkels γ an.
[1 aus 5] [0 / 1 P.]
- Formel 1: \(\gamma = \alpha - \arccos \left( {\dfrac{a}{d}} \right)\)
- Formel 2: \(\gamma = \alpha - \arcsin \left( {\dfrac{{b \cdot \sin \left( \beta \right)}}{d}} \right)\)
- Formel 3: \(\gamma = \arcsin \left( {\dfrac{{a \cdot \sin \left( \alpha \right)}}{d}} \right)\)
- Formel 4: \(\gamma = \alpha - \left( {\dfrac{{180^\circ - \beta }}{2}} \right)\)
- Formel 5: \(\gamma = \arccos \left( {\dfrac{{{b^2} + {d^2} - {a^2}}}{{2 \cdot b \cdot d}}} \right)\)
Banner Werbung für Region DE
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 4493
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Tunnelvortrieb - Aufgabe B_521
Für eine Eisenbahnstrecke wird ein Tunnel gegraben.
Teil b
Ein Teil des anfallenden Materials wird aufgeschüttet. Der dabei entstehende Schüttkegel hat einen Neigungswinkel von 32° (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Radius r eines solchen Schüttkegels mit einem Volumen von 200 m3.
[0 / 1 P.]
Aufgabe 4494
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Tunnelvortrieb - Aufgabe B_521
Für eine Eisenbahnstrecke wird ein Tunnel gegraben.
Teil c
Beim Ausbau des Tunnels werden vorgefertigte Betonelemente eingesetzt. Die Breite dieser Betonelemente ist annähernd normalverteilt mit dem Erwartungswert μ = 5 m und der Standardabweichung σ = 0,005 m. Zur Qualitätssicherung werden Zufallsstichproben mit dem Stichprobenumfang n = 10 entnommen und die Stichprobenmittelwerte der Breiten ermittelt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie den Erwartungswert \({\mu _{\overline x }}\) und die Standardabweichung \({\sigma _{\overline x }}\) für die Verteilung dieser Stichprobenmittelwerte an.
- \({\mu _{\overline x }}=\)
- \(\sigma _{\overline x }=\)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Wahrscheinlichkeit, dass diese Stichprobenmittelwerte zwischen 4,996 m und 5,004 m liegen.
[0 / 1 P.]
- f1 ist die Dichtefunktion für die Verteilung der Stichprobenmittelwerte mit dem Stichprobenumfang n1 = 6.
- f2 ist die Dichtefunktion für die Verteilung der Stichprobenmittelwerte mit dem Stichprobenumfang n2.
3. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe der nachstehenden Abbildung den Stichprobenumfang n2.
[0 / 1 P.]
Aufgabe 4495
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Carport - Aufgabe B_522
Ein Carport soll durch verschiedene Modelle beschrieben werden.
Teil a
Im Modell A wird ein Teil des Carports durch die Graphen der Funktionen f, g und h beschrieben.
(siehe nachstehende Abbildung).
Der Graph der Funktion f mit \(f\left( x \right) = a \cdot \sqrt x \) beschreibt zwischen den Punkten A = (0 | 0) und B den Verlauf einer Begrenzungslinie. Der Graph der Funktion h ergibt sich durch Verschiebung des Graphen der Funktion f um 1 m nach links und um 0,5 m nach unten.
1. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie die fehlenden Zahlen und Rechenzeichen in die dafür vorgesehenen Kästchen ein.
\(h\left( x \right) = a \cdot \sqrt {x\boxed{}\boxed{}} \boxed{\boxed{}}\boxed{}\)
[0 / 1 P.]
Der Graph der Funktion g mit \(g\left( x \right) = b \cdot \sqrt x \) beschreibt zwischen den Punkten A = (0 | 0) und E = (0,4 | –1,62) den Verlauf einer weiteren Begrenzungslinie.
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie den Parameter b.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: \(h'\left( {0,1} \right) > f'\left( {0,1} \right)\)
- Aussage 2: \(f'\left( {0,1} \right) - g'\left( {0,1} \right) = 0\)
- Aussage 3: \(f'\left( 0 \right) = 1\)
- Aussage 4: \(f'\left( {0,1} \right) = h'\left( { - 0,9} \right)\)
- Aussage 5: \(g'\left( {0,4} \right) < g'\left( {0,1} \right)\)
Aufgabe 4496
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Carport - Aufgabe B_522
Ein Carport soll durch verschiedene Modelle beschrieben werden.
Teil b
Im Modell B wird ein Teil des Carports durch den Kreisbogen k und den Graphen der Funktion q beschrieben (siehe nachstehende Abbildung).
Der Kreisbogen k verläuft zwischen den Punkten F und G = (1,18 | 1). Der zugehörige Kreis hat den Mittelpunkt M = (2,34 | –0,16).
1. Teilaufgabe - Bearbeitungszeit 05:40
Zeigen Sie, dass die Steigung der Tangente t an den Kreisbogen im Punkt G den Wert 1 hat.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Veranschaulichen Sie in der obigen Abbildung denjenigen Winkel α, der durch die nachstehende Formel berechnet werden kann.
\(\overrightarrow {MF} \cdot \overrightarrow {MG} = \left| {\overrightarrow {MF} } \right| \cdot \left| {\overrightarrow {MG} } \right| \cdot \cos \left( \alpha \right)\)
0 / 1 P.]
Zwischen den Punkten G und R kann die Begrenzungslinie des Carports durch den Graphen der Funktion q beschrieben werden.
\(q\left( x \right) = - 0,00078 \cdot {x^4} + 0,0312 \cdot {x^3} - 0,366 \cdot {x^2} + 1,74 \cdot x - 0,593\)
x, q(x) |
Koordinaten in m |
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Länge der in der obigen Abbildung dargestellten Begrenzungslinie q des Carports im Intervall [1,18; 6,66].
[0 / 1 P.]
Banner Werbung für Region AT
maths2mind
Kreditkarte? - Braucht man nicht!
Kostenpflichtige Pakete? Gibt es nicht!
Nach der Prüfung genießt du mit dem gesparten Geld deinen Erfolg

Aufgabe 4497
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Martinigläser - Aufgabe B_523
In der nebenstehenden Abbildung ist ein Martiniglas dargestellt. Der obere Teil des Martiniglases kann modellhaft als Drehkegel mit dem Durchmesser D und der Höhe H betrachtet werden.
Teil a
In der unten stehenden nicht maßstabgetreuen Abbildung ist ein Modell dieses Martiniglases dargestellt. Der Drehkegel entsteht durch Rotation des Graphen der linearen Funktion f um die x-Achse.
1. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie unter Verwendung von H und D die fehlenden Ausdrücke in die dafür vorgesehenen Kästchen ein.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe von H und D eine Gleichung der Funktion f auf.
f(x) =
[0 / 1 P.]
Vx ist das Volumen des Drehkegels, der bei Rotation des Graphen der Funktion f um die x-Achse entsteht.
3. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Formel zur Berechnung von Vx auf.
Vx =
[0 / 1 P.]
Der obere Teil eines bestimmten Martiniglases wird durch Rotation des Graphen der Funktion g im Intervall [0; 75] um die x-Achse modelliert.
\(g\left( x \right) = \dfrac{{13}}{{17}} \cdot x\)
x, g(x) |
Koordinaten in mm |
Dieses Martiniglas wird mit einer Flüssigkeitsmenge von 2 dl befüllt.
4. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die zugehörige Füllhöhe (gemessen von der Spitze des Drehkegels).
[0 / 1 P.]
Aufgabe 4498
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Martinigläser - Aufgabe B_523
Teil b
In der nachstehenden Abbildung ist der obere Teil eines teilweise befüllten Martiniglases dargestellt. Dabei handelt es sich um einen Drehkegel mit dem Durchmesser D und der Höhe H.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Formel zur Berechnung von z auf. Verwenden Sie dabei H, D und x.
z =
[0 / 1 P.]
Dieses Martiniglas ist bis zur Höhe x befüllt. Das Füllvolumen entspricht dabei dem halben Volumen des Drehkegels mit dem Durchmesser D und der Höhe H.
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeigen Sie allgemein, dass die Höhe x rund 80 % der Höhe H beträgt.
[0 / 1 P.]
Aufgabe 4499
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Martinigläser - Aufgabe B_523
Teil c
Beim Verkauf von Martinigläsern geht man von einem linearen Zusammenhang zwischen dem Preis in GE/ME und der Verkaufsmenge in ME aus. Bei einem Preis von 5,00 GE/ME können 100 ME verkauft werden. Sinkt der Preis um 1,50 GE/ME, können um 200 ME mehr verkauft werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der zugehörigen linearen Preisfunktion der Nachfrage pN auf.
[0 / 1 P.]
In der nachstehenden Abbildung sind der Graph der Erlösfunktion E und der Graph der Kostenfunktion K dargestellt.
2. Teilaufgabe - Bearbeitungszeit 05:40
Lesen Sie diejenige Verkaufsmenge ab, bei der der Gewinn 250 GE beträgt.
ME
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die nicht zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: Der Erlös bei einer Verkaufsmenge von 100 ME beträgt 500 GE.
- Aussage 2: Die Fixkosten betragen 200 GE.
- Aussage 3: Die Kostenfunktion K ist streng monoton steigend.
- Aussage 4: Für die untere Gewinngrenze xu gilt: E′(xu) = K′(xu).
- Aussage 5: Für die zugehörige Stückkostenfunktion K gilt: K(200) = 3.