Österreichische AHS Matura - 2016.01.15 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1469
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Aussagen über Zahlen
Gegeben sind Aussagen über Zahlen.
- Aussage 1: Jede reelle Zahl ist eine irrationale Zahl.
- Aussage 2: Jede reelle Zahl ist eine komplexe Zahl.
- Aussage 3: Jede rationale Zahl ist eine ganze Zahl.
- Aussage 4: Jede ganze Zahl ist eine natürliche Zahl.
- Aussage 5: Jede natürliche Zahl ist eine reelle Zahl.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Welche der im Folgenden angeführten Aussagen gelten? Kreuzen Sie die beiden zutreffenden Aussagen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1468
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die folgende quadratische Gleichung in der Unbekannten x über der Grundmenge \({\Bbb R}\)
\(\eqalign{ & 4{x^2} - d = 2 \cr & d \in {\Bbb R} \cr} \)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie denjenigen Wert für \(d \in {\Bbb R}\) an, für den die Gleichung genau eine Lösung hat!
Aufgabe 1467
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssystem
Gegeben ist ein Gleichungssystem aus zwei linearen Gleichungen in den Variablen \(x,y \in {\Bbb R}\)
\(\eqalign{ & 2x + 3y = 7 \cr & 3x + by = c \cr & {\text{mit }}b,c \in {\Bbb R} \cr} \)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Ermitteln Sie diejenigen Werte für b und c, für die das Gleichungssystem unendlich viele Lösungen hat!
Aufgabe 1466
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Normalvektoren
Gegeben ist der Vektor \(\overrightarrow a = \left( {\begin{array}{*{20}{c}} 4\\ 1\\ 2 \end{array}} \right)\)
Aufgabenstellung:
Bestimmen Sie die Koordinate zb des Vektors \(\overrightarrow b = \left( {\begin{array}{*{20}{c}} 4\\ 2\\ {{z_b}} \end{array}} \right)\) so, dass \(\overrightarrow a\) und \(\overrightarrow b\) aufeinander normal stehen!
Aufgabe 1465
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer Geraden
In der nachstehenden Abbildung sind eine Gerade g durch die Punkte P und Q sowie der Punkt A dargestellt.
Aufgabenstellung:
Ermitteln Sie eine Gleichung der Geraden h, die durch A verlauft und normal zu g ist!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1464
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Standseilbahn Salzburg
Die Festungsbahn Salzburg ist eine Standseilbahn in der Stadt Salzburg mit konstanter Steigung. Die Bahn auf den dortigen Festungsberg ist die älteste in Betrieb befindliche Seilbahn dieser Art in Osterreich. Die Standseilbahn legt eine Wegstrecke von 198,5 m zurück und überwindet dabei einen Höhenunterschied von 96,6 m.
Anmerkung: Die Original-Angabe enthält ein Foto von der Standseilbahn in Salzburg, auf dem man erkennen kann, dass die Bahn in einem Winkel gegen die Waagrechte zur Burg hinauf fährt. Wir ersetzen dieses Foto aus Urheberrechtsgründen durch folgende Skizze, wodurch das Beispiel aber vereinfacht wird:
Aufgabenstellung
Berechnen Sie den Winkel α, unter dem die Gleise der Bahn gegen die Horizontale geneigt sind!
Aufgabe 1463
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Asymptotisches Verhalten
Gegeben sind fünf Funktionsgleichungen.
- Aussage 1: \({f_1}\left( x \right) = \dfrac{2}{x}\)
- Aussage 2: \({f_2}\left( x \right) = {2^x}\)
- Aussage 3: \({f_3}\left( x \right) = \dfrac{x}{2}\)
- Aussage 4: \({f_4}\left( x \right) = {\left( {\dfrac{1}{2}} \right)^x}\)
- Aussage 5: \({f_5}\left( x \right) = {x^{\dfrac{1}{2}}}\)
Aufgabenstellung
Welche dieser Funktionen besitzt/besitzen eine waagrechte Asymptote? Kreuzen Sie die zutreffende(n) Funktionsgleichung(en) an!
Aufgabe 1462
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer Funktion
Der Graph der Funktion f ist eine Gerade, die durch die Punkte P = (2|8) und Q = (4|4) verlauft.
Aufgabenstellung:
Geben Sie eine Funktionsgleichung der Funktion f an!
Aufgabe 1461
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 9. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Heizungstage
Die Anzahl der Heizungstage, für die ein Vorrat an Heizöl in einem Tank reicht, ist indirekt proportional zum durchschnittlichen Tagesverbrauch x (in Litern).
Aufgabenstellung:
In einem Tank befinden sich 1500 Liter Heizöl. Geben Sie einen Term an, der die Anzahl d(x) der Heizungstage in Abhängigkeit vom durchschnittlichen Tagesverbrauch x bestimmt!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1460
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften von Polynomfunktionen 3. Grades
Eine Polynomfunktion 3. Grades hat allgemein die Form
\(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) mit \(a,b,c,d \in {\Bbb R}\) und \(a \ne 0\)
- Aussage 1: Es gibt Polynomfunktionen 3. Grades, die keine lokale Extremstelle haben.
- Aussage 2: Es gibt Polynomfunktionen 3. Grades, die keine Nullstelle haben.
- Aussage 3: Es gibt Polynomfunktionen 3. Grades, die mehr als eine Wendestelle haben.
- Aussage 4: Es gibt Polynomfunktionen 3. Grades, die keine Wendestelle haben.
- Aussage 5: Es gibt Polynomfunktionen 3. Grades, die genau zwei verschiedene reelle Nullstellen haben.
Aufgabenstellung:
Welche der obigen Aussagen treffen für Polynomfunktionen 3. Grades zu? Kreuzen Sie die beiden zutreffenden Antworten an!
Aufgabe 1459
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften einer Exponentialfunktion
Gegeben ist die Funktion f mit \(f\left( x \right) = 50 \cdot {1,97^x}\)
- Aussage 1: Der Graph der Funktion f verlauft durch den Punkt P = (50|0).
- Aussage 2: Die Funktion f ist im Intervall [0; 5] streng monoton steigend.
- Aussage 3: Wenn man den Wert des Arguments x um 5 vergrößert, wird der Funktionswert 50-mal so groß.
- Aussage 4: Der Funktionswert f(x) ist positiv für alle x ∈ ℝ.
- Aussage 5: Wenn man den Wert des Arguments x um 1 vergrößert, wird der zugehörige Funktionswert um 97 % größer.
Aufgabenstellung:
Welche der obigen Aussagen trifft/treffen auf diese Funktion zu? Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1458
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer Sinusfunktion
Die nachstehende Abbildung zeigt den Graphen der Funktion s mit der Gleichung \(s\left( x \right) = c \cdot \sin \left( {d \cdot x} \right)\) mit \(c,d \in {{\Bbb R}^ + }\) im Intervall \(\left[ { - 2\pi ;2\pi } \right]\)
Aufgabenstellung:
Erstellen Sie im obigen Koordinatensystem eine Skizze eines möglichen Funktionsgraphen der Funktion s1 mit \({s_1}\left( x \right) = 2c \cdot \sin \left( {2d \cdot x} \right)\) im Intervall \(\left[ { - 2\pi ;2\pi } \right]\)