Österreichische AHS Matura - 2017.01.12 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1541
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 1. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Mehrwertsteuer für Hörbücher
Seit 2015 werden in Deutschland bestimmte Hörbücher statt mit 19 % Mehrwertsteuer (MwSt.) mit dem ermäßigten Mehrwertsteuersatz von 7 % belegt.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Stellen Sie eine Formel auf, mit deren Hilfe für ein Hörbuch, das ursprünglich inklusive 19 % MwSt. € x kostete, der ermäßigte Preis € y inklusive 7 % MwSt. berechnet werden kann!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1540
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die Gleichung \(a \cdot {x^2} + 10 \cdot x + 25 = 0{\text{ mit }}a \in {\Bbb R}{\text{ und }}a \ne 0\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Bestimmen Sie jene(n) Wert(e) von a, für welche(n) die Gleichung genau eine reelle Lösung hat!
a=
Aufgabe 1539
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Teilungspunkt
Die gegebene Strecke AB wird innen durch den Punkt T im Verhältnis 3:2 geteilt.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Stellen Sie eine Formel für die Berechnung des Punkts T auf!
Aufgabe 1538
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trapez
Von einem Trapez ABCD sind die Koordinaten der Eckpunkte gegeben: A= (2|–6); B= (10|–2); C= (9|2); D= (3|y). Die Seiten a= AB und c= CD sind zueinander parallel.
Aufgabenstellung:
Geben Sie den Wert der Koordinate y des Punkts D an!
Aufgabe 1537
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallele Gerade
Gegeben ist die Gerade \(g:X = \left( \begin{array}{l} 1\\ - 2 \end{array} \right) + s \cdot \left( \begin{array}{l} 2\\ 3 \end{array} \right)\). Die Gerade h verläuft parallel zu g durch den Koordinatenursprung.
Aufgabenstellung:
Geben Sie die Gleichung der Geraden h in der Form \(a \cdot x + b \cdot y = c\) mit \(a,b,c \in {\Bbb R}\) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1536
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rhombus (Raute)
In einem Rhombus mit der Seite a halbieren die Diagonalen e= AC und f= BD einander. Die Diagonale e halbiert den Winkel α= ∡ DAB und die Diagonale f halbiert den Winkel β= ∡ ABC
Aufgabenstellung:
Gegeben sind die Seitenlänge a und der Winkel β. Geben Sie eine Formel an, mit der f mithilfe von a und β berechnet werden kann!
Aufgabe 1535
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schnittpunkt
Die Funktion E gibt den Erlös E(x) und die Funktion K die Kosten K(x) jeweils in Euro bezogen auf die Produktionsmenge x an. Die Produktionsmenge x wird in Mengeneinheiten (ME) angegeben. Im folgenden Koordinatensystem sind die Graphen beider Funktionen dargestellt:
Aufgabenstellung:
Interpretieren Sie die beiden Koordinaten des Schnittpunkts S der beiden Funktionsgraphen im gegebenen Zusammenhang!
Aufgabe 1534
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigende Funktion
Gegeben sind fünf Funktionen.
- Aussage 1: Lineare Funktion f mit Funktionsgleichung \(f(x) = a \cdot x + b\) mit \((a > 0,b > 0)\)
- Aussage 2: Potenzfunktion f mit Funktionsgleichung \(f(x) = a \cdot {x^n}\) mit \((a < 0,n \in {\Bbb N},n > 0)\)
- Aussage 3: Sinusfunktion f mit Funktionsgleichung \(f(x) = a \cdot \sin (b \cdot x)\) mit \((a > 0,b > 0)\)
- Aussage 4: Exponentialfunktion f mit Funktionsgleichung \(f(x) = a \cdot {e^{k \cdot x}}\) mit \((a > 0,k < 0)\)
- Aussage 5: Exponentialfunktion f mit Funktionsgleichung \(f(x) = c \cdot {a^x}\) mit \((a > 1,c > 0)\)
Aufgabenstellung:
Welche der nachstehenden Funktionen f sind in jedem Intervall \([{x_1};{x_2}]\) mit \(0 < {x_1} < {x_2}\) streng monoton steigend? Kreuzen Sie die zutreffenden Funktionen an!
Aufgabe 1533
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Elektrischer Widerstand
Der elektrische Widerstand R eines zylinderförmigen Leiters mit dem Radius r und der Länge l kann mithilfe der Formel \(R = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\) berechnet werden. Der spezifische Widerstand \(\rho \) ist eine vom Material und von der Temperatur des Leiters abhängige Größe.
- Aussage 1: \(R(l) = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\)mit \(\rho ,r\) konstant
- Aussage 2: \(l(R) = \dfrac{R}{\rho } \cdot {r^2} \cdot \pi\) mit \(\rho ,r\) konstant
- Aussage 3: \(R(\rho ) = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\) mit \(l ,r\) konstant
- Aussage 4: \(R(r) = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\) mit \(\rho ,l\) konstant
- Aussage 5: \(l(r) = \dfrac{R}{\rho } \cdot {r^2} \cdot \pi\) mit \(R,\rho\) konstant
Aufgabenstellung:
Obenstehend werden Zusammenhänge angeführt, die aus der Formel für den elektrischen Widerstand hergeleitet werden können. Welche der nachstehend angeführten Gleichungen bestimmt/bestimmen eine lineare Funktion? Kreuzen Sie die zutreffende(n) Gleichung(en) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1532
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktion
In der nachstehenden Abbildung ist der Graph einer Funktion f mit \(f(x) = {x^{\dfrac{1}{2}}} + b\) und \((a,b \in {\Bbb R},a \ne 0)\) dargestellt. Die Koordinaten der hervorgehobenen Punkte des Graphen der Funktion sind ganzzahlig.
Aufgabenstellung:
Geben Sie die Werte von a und b an!
Aufgabe 1531
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wachstum einer Population
Die Größe einer Population wird in Abhängigkeit von der Zeit mithilfe der Funktion N mit \(N(t) = {N_0} \cdot {e^{0,1188 \cdot t}}\) beschrieben, wobei die Zeit t in Stunden angegeben wird. Dabei bezeichnet N0 die Größe der Population zum Zeitpunkt t=0 und N(t) die Größe der Population zum Zeitpunkt \(t \geqslant 0\).
Aufgabenstellung:
Bestimmen Sie denjenigen Prozentsatz p, um den die Population pro Stunde wächst!
p≈ ___ %
Aufgabe 1530
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktionen
Gegeben sind die Funktionen f und g mit \(f(x) = - \sin (x)\) bzw. \(g(x) = \cos (x)\).
Aufgabenstellung:
Geben Sie an, um welchen Wert \(b \in [0;2\pi ]\) in rad der Graph von f verschoben werden muss, um den Graphen von g zu erhalten, sodass \(-sin\left( {x + b} \right) = cos\left( x \right)\) gilt!