Headerbar Werbung für Region "nicht-DACH"
Österreichische AHS Matura - 2017.01.12 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1541
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 1. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Mehrwertsteuer für Hörbücher
Seit 2015 werden in Deutschland bestimmte Hörbücher statt mit 19 % Mehrwertsteuer (MWSt.) mit dem ermäßigten Mehrwertsteuersatz von 7 % belegt.
Aufgabenstellung:
Stellen Sie eine Formel auf, mit deren Hilfe für ein Hörbuch, das ursprünglich inklusive 19 % MWSt. € x kostete, der ermäßigte Preis € y inklusive 7 % MWSt. berechnet werden kann!
Banner Werbung für Region CH
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 1540
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die Gleichung \(a \cdot {x^2} + 10 \cdot x + 25{\text{ mit }}a \in {\Bbb R}{\text{ und }}a \ne 0\)
Aufgabenstellung:
Bestimmen Sie jene(n) Wert(e) von a, für welche(n) die Gleichung genau eine reelle Lösung hat!
a=
Aufgabe 1539
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Teilungspunkt
Die gegebene Strecke AB wird innen durch den Punkt T im Verhältnis 3:2 geteilt.
Aufgabenstellung:
Stellen Sie eine Formel für die Berechnung des Punkts T auf!
Aufgabe 1538
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trapez
Von einem Trapez ABCD sind die Koordinaten der Eckpunkte gegeben: A= (2|–6); B= (10|–2); C= (9|2); D= (3|y). Die Seiten a= AB und c= CD sind zueinander parallel.
Aufgabenstellung:
Geben Sie den Wert der Koordinate y des Punkts D an!
Aufgabe 1537
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallele Gerade
Gegeben ist die Gerade \(g:X = \left( \begin{array}{l} 1\\ - 2 \end{array} \right) + s \cdot \left( \begin{array}{l} 2\\ 3 \end{array} \right)\). Die Gerade h verläuft parallel zu g durch den Koordinatenursprung.
Aufgabenstellung:
Geben Sie die Gleichung der Geraden h in der Form \(a \cdot x + b \cdot y = c\) mit \(a,b,c \in {\Bbb R}\) an!
Banner Werbung für Region AT
maths2mind
Kreditkarte? - Braucht man nicht!
Kostenpflichtige Pakete? Gibt es nicht!
Nach der Prüfung genießt du mit dem gesparten Geld deinen Erfolg

Aufgabe 1536
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rhombus (Raute)
In einem Rhombus mit der Seite a halbieren die Diagonalen e= AC und f= BD einander. Die Diagonale e halbiert den Winkel α= ∡ DAB und die Diagonale f halbiert den Winkel β= ∡ ABC
Aufgabenstellung:
Gegeben sind die Seitenlänge a und der Winkel β. Geben Sie eine Formel an, mit der f mithilfe von a und β berechnet werden kann!
Aufgabe 1535
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schnittpunkt
Die Funktion E gibt den Erlös E(x) und die Funktion K die Kosten K(x) jeweils in Euro bezogen auf die Produktionsmenge x an. Die Produktionsmenge x wird in Mengeneinheiten (ME) angegeben. Im folgenden Koordinatensystem sind die Graphen beider Funktionen dargestellt:
Aufgabenstellung:
Interpretieren Sie die beiden Koordinaten des Schnittpunkts S der beiden Funktionsgraphen im gegebenen Zusammenhang!
Aufgabe 1534
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigende Funktion
Gegeben sind fünf Funktionen.
- Aussage 1: Lineare Funktion f mit Funktionsgleichung \(f(x) = a \cdot x + b\) mit \((a > 0,b > 0)\)
- Aussage 2: Potenzfunktion f mit Funktionsgleichung \(f(x) = a \cdot {x^n}\) mit \((a < 0,n \in {\Bbb N},n > 0)\)
- Aussage 3: Sinusfunktion f mit Funktionsgleichung \(f(x) = a \cdot \sin (b \cdot x)\) mit \((a > 0,b > 0)\)
- Aussage 4: Exponentialfunktion f mit Funktionsgleichung \(f(x) = a \cdot {e^{k \cdot x}}\) mit \((a > 0,k < 0)\)
- Aussage 5: Exponentialfunktion f mit Funktionsgleichung \(f(x) = c \cdot {a^x}\) mit \((a > 1,c > 0)\)
Aufgabenstellung:
Welche der nachstehenden Funktionen f sind in jedem Intervall \([{x_1};{x_2}]\) mit \(0 < {x_1} < {x_2}\) streng monoton steigend? Kreuzen Sie die zutreffenden Funktionen an!
Aufgabe 1533
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Elektrischer Widerstand
Der elektrische Widerstand R eines zylinderförmigen Leiters mit dem Radius r und der Länge l kann mithilfe der Formel \(R = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\) berechnet werden. Der spezifische Widerstand \(\rho \) ist eine vom Material und von der Temperatur des Leiters abhängige Größe.
- Aussage 1: \(R(l) = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\)mit \(\rho ,r\) konstant
- Aussage 2: \(l(R) = \dfrac{R}{\rho } \cdot {r^2} \cdot \pi\) mit \(\rho ,r\) konstant
- Aussage 3: \(R(\rho ) = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\) mit \(l ,r\) konstant
- Aussage 4: \(R(r) = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\) mit \(\rho ,l\) konstant
- Aussage 5: \(l(r) = \dfrac{R}{\rho } \cdot {r^2} \cdot \pi\) mit \(R,\rho\) konstant
Aufgabenstellung:
Obenstehend werden Zusammenhänge angeführt, die aus der Formel für den elektrischen Widerstand hergeleitet werden können. Welche der nachstehend angeführten Gleichungen bestimmt/bestimmen eine lineare Funktion? Kreuzen Sie die zutreffende(n) Gleichung(en) an!
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1532
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktion
In der nachstehenden Abbildung ist der Graph einer Funktion f mit \(f(x) = {x^{\dfrac{1}{2}}} + b\) und \((a,b \in {\Bbb R},a \ne 0)\) dargestellt. Die Koordinaten der hervorgehobenen Punkte des Graphen der Funktion sind ganzzahlig.
Aufgabenstellung:
Geben Sie die Werte von a und b an!
Aufgabe 1531
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wachstum einer Population
Die Größe einer Population wird in Abhängigkeit von der Zeit mithilfe der Funktion N mit \(N(t) = {N_0} \cdot {e^{0,1188 \cdot t}}\) beschrieben, wobei die Zeit t in Stunden angegeben wird. Dabei bezeichnet N0 die Größe der Population zum Zeitpunkt t=0 und N(t) die Größe der Population zum Zeitpunkt \(t \geqslant 0\).
Aufgabenstellung:
Bestimmen Sie denjenigen Prozentsatz p, um den die Population pro Stunde wächst!
p≈ ___ %
Aufgabe 1530
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktionen
Gegeben sind die Funktionen f und g mit \(f(x) = - \sin (x)\) bzw. \(g(x) = \cos (x)\).
Aufgabenstellung:
Geben Sie an, um welchen Wert \(b \in [0;2\pi ]\) in rad der Graph von f verschoben werden muss, um den Graphen von g zu erhalten, sodass \(-sin\left( {x + b} \right) = cos\left( x \right)\) gilt!