Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Österreichische AHS Matura - 2017.01.12 - 24 Typ I Beispiele - 120 Minuten Rechenzeit

Österreichische AHS Matura - 2017.01.12 - 24 Typ I Beispiele - 120 Minuten Rechenzeit

Lösungsweg
PDF

Aufgabe 1541

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 1. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 2. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Mehrwertsteuer für Hörbücher

Seit 2015 werden in Deutschland bestimmte Hörbücher statt mit 19 % Mehrwertsteuer (MwSt.) mit dem ermäßigten Mehrwertsteuersatz von 7 % belegt.


Aufgabenstellung [0 / 1 P.]  – Bearbeitungszeit < 5 Minuten
Stellen Sie eine Formel auf, mit deren Hilfe für ein Hörbuch, das ursprünglich inklusive 19 % MwSt. € x kostete, der ermäßigte Preis € y inklusive 7 % MwSt. berechnet werden kann!

AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 2.1
Mehrwertsteuer für Hörbücher - 1541. Aufgabe 1_541
Fragen oder Feedback

Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Startseite
rgb(244,123,130)
Bild
Illustration Poolliegen 1050 x 450
Startseite
Lösungsweg
PDF

Aufgabe 1540

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 2. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Quadratische Gleichung

Gegeben ist die Gleichung \(a \cdot {x^2} + 10 \cdot x + 25 = 0{\text{ mit }}a \in {\Bbb R}{\text{ und }}a \ne 0\)


Aufgabenstellung [0 / 1 P.]  – Bearbeitungszeit < 5 Minuten
Bestimmen Sie jene(n) Wert(e) von a, für welche(n) die Gleichung genau eine reelle Lösung hat!
a=

AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 2.3
Diskriminante gleich Null
abc-Formel
Quadratische Gleichung - 1540. Aufgabe 1_540
Fragen oder Feedback
Lösungsweg
PDF

Aufgabe 1539

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 3. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Teilungspunkt

Die gegebene Strecke AB wird innen durch den Punkt T im Verhältnis 3:2 geteilt.

Bild
Teilung einer Strecke

Aufgabenstellung [0 / 1 P.]  – Bearbeitungszeit < 5 Minuten
Stellen Sie eine Formel für die Berechnung des Punkts T auf!

Teilung einer Strecke
Teilungspunkt - 1539. Aufgabe 1_539
AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.2
Verbindungsvektor zwischen 2 Punkten
Spitze minus Schaft Regel
Fragen oder Feedback
Lösungsweg

Aufgabe 1538

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 4. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Trapez

Von einem Trapez ABCD sind die Koordinaten der Eckpunkte gegeben: A= (2|–6); B= (10|–2); C= (9|2); D= (3|y). Die Seiten a= AB und c= CD sind zueinander parallel.

Strecke f Strecke f: Strecke [A, B] Strecke g Strecke g: Strecke [A, D] Strecke h Strecke h: Strecke [D, C] Strecke i Strecke i: Strecke [C, B] Punkt A A = (2, -6) Punkt A A = (2, -6) Punkt B B = (10, -6) Punkt B B = (10, -6) Punkt D D = (4, -2) Punkt D D = (4, -2) Punkt C C = (9, -2) Punkt C C = (9, -2) a text1 = "a" b text2 = "b" c text3 = "c" d text4 = "d" A Text1 = "A" B Text2 = "B" C Text3 = "C" D Text4 = "D"


Aufgabenstellung:
Geben Sie den Wert der Koordinate y des Punkts D an!

AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
Multiplikation eines Vektors mit einem Skalar
Trapez - 1538. Aufgabe 1_538
Fragen oder Feedback
Lösungsweg

Aufgabe 1537

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 5. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Parallele Gerade

Gegeben ist die Gerade \(g:X = \left( \begin{array}{l} 1\\ - 2 \end{array} \right) + s \cdot \left( \begin{array}{l} 2\\ 3 \end{array} \right)\). Die Gerade h verläuft parallel zu g durch den Koordinatenursprung.


Aufgabenstellung:
Geben Sie die Gleichung der Geraden h in der Form \(a \cdot x + b \cdot y = c\) mit \(a,b,c \in {\Bbb R}\) an!

AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.4
Parallele Geraden
Parallele Gerade - 1537. Aufgabe 1_537
Fragen oder Feedback

Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Startseite
rgb(244,123,130)
Bild
Illustration Poolliegen 1050 x 450
Startseite
Lösungsweg

Aufgabe 1536

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 6. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Rhombus (Raute)

In einem Rhombus mit der Seite a halbieren die Diagonalen e= AC und f= BD einander. Die Diagonale e halbiert den Winkel α= ∡ DAB und die Diagonale f halbiert den Winkel β= ∡ ABC

Winkel γ Winkel γ: Winkel zwischen f, e Winkel γ Winkel γ: Winkel zwischen f, e Strecke f Strecke f: Strecke [D, B] Strecke e Strecke e: Strecke [A, C] β Text2 = "β" β Text2 = "β" Winkel β Winkel β: Winkel zwischen C, B, A Winkel β Winkel β: Winkel zwischen C, B, A Strecke a Strecke a: Strecke [A, B] von Viereck Vieleck1 Strecke b Strecke b: Strecke [B, C] von Viereck Vieleck1 Strecke c Strecke c: Strecke [C, D] von Viereck Vieleck1 Strecke d Strecke d: Strecke [D, A] von Viereck Vieleck1 Punkt A Punkt A: Schnittpunkt von xAchse, yAchse Punkt A Punkt A: Schnittpunkt von xAchse, yAchse Punkt C C = (4, 2) Punkt C C = (4, 2) Punkt D D = (1.5, 2) Punkt D D = (1.5, 2) Punkt B B = (2.5, 0) Punkt B B = (2.5, 0) α Text1_1 = "α" α Text1_1 = "α" Winkel α Winkel α: Winkel zwischen B, A, D Winkel α Winkel α: Winkel zwischen B, A, D a Text1 = "a" A Text3 = "A" B Text4 = "B" C Text5 = "C" D Text6 = "D" e Text7 = "e" f Text8 = "f"


Aufgabenstellung:
Gegeben sind die Seitenlänge a und der Winkel β. Geben Sie eine Formel an, mit der f mithilfe von a und β berechnet werden kann!

AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 4.1
Winkelsymmetrale
Kosinussatz
Raute
Rhombus (Raute) - 1536. Aufgabe 1_536
Fragen oder Feedback
Lösungsweg

Aufgabe 1535

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 7. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Schnittpunkt

Die Funktion E gibt den Erlös E(x) und die Funktion K die Kosten K(x) jeweils in Euro bezogen auf die Produktionsmenge x an. Die Produktionsmenge x wird in Mengeneinheiten (ME) angegeben. Im folgenden Koordinatensystem sind die Graphen beider Funktionen dargestellt:

Funktion f f: y = 2x³ - 1 Funktion g g(x) = 5x³ - 2 f Text1 = “f” g Text2 = “g”


Aufgabenstellung:
Interpretieren Sie die beiden Koordinaten des Schnittpunkts S der beiden Funktionsgraphen im gegebenen Zusammenhang!

AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 1.6
Erlösfunktion
Kostenfunktion
Schnittpunkt - 1535. Aufgabe 1_535
Break-even-Point
Fragen oder Feedback
LösungswegBeat the Clock

Aufgabe 1534

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 8. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Steigende Funktion

Gegeben sind fünf Funktionen.

  • Aussage 1: Lineare Funktion f mit Funktionsgleichung \(f(x) = a \cdot x + b\) mit \((a > 0,b > 0)\)
  • Aussage 2: Potenzfunktion f mit Funktionsgleichung \(f(x) = a \cdot {x^n}\) mit \((a < 0,n \in {\Bbb N},n > 0)\)
  • Aussage 3: Sinusfunktion f mit Funktionsgleichung \(f(x) = a \cdot \sin (b \cdot x)\) mit \((a > 0,b > 0)\)
  • Aussage 4: Exponentialfunktion f mit Funktionsgleichung \(f(x) = a \cdot {e^{k \cdot x}}\) mit \((a > 0,k < 0)\)
  • Aussage 5: Exponentialfunktion f mit Funktionsgleichung \(f(x) = c \cdot {a^x}\) mit \((a > 1,c > 0)\)

Aufgabenstellung:
Welche der nachstehenden Funktionen f sind in jedem Intervall \([{x_1};{x_2}]\) mit \(0 < {x_1} < {x_2}\) streng monoton steigend? Kreuzen Sie die zutreffenden Funktionen an!

Streng monoton wachsende Funktion
Steigende Funktion - 1534. Aufgabe 1_534
AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 1.9
Fragen oder Feedback
LösungswegBeat the Clock

Aufgabe 1533

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 9. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Elektrischer Widerstand

Der elektrische Widerstand R eines zylinderförmigen Leiters mit dem Radius r und der Länge l kann mithilfe der Formel \(R = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\) berechnet werden. Der spezifische Widerstand \(\rho \) ist eine vom Material und von der Temperatur des Leiters abhängige Größe.

  • Aussage 1: \(R(l) = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\)mit \(\rho ,r\) konstant
  • Aussage 2: \(l(R) = \dfrac{R}{\rho } \cdot {r^2} \cdot \pi\) mit \(\rho ,r\) konstant
  • Aussage 3: \(R(\rho ) = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\) mit \(l ,r\) konstant
  • Aussage 4: \(R(r) = \rho \cdot \dfrac{l}{{{r^2} \cdot \pi }}\) mit \(\rho ,l\) konstant
  • Aussage 5: \(l(r) = \dfrac{R}{\rho } \cdot {r^2} \cdot \pi\) mit \(R,\rho\) konstant

Aufgabenstellung:
Obenstehend werden Zusammenhänge angeführt, die aus der Formel für den elektrischen Widerstand hergeleitet werden können. Welche der nachstehend angeführten Gleichungen bestimmt/bestimmen eine lineare Funktion? Kreuzen Sie die zutreffende(n) Gleichung(en) an!

Lineare Funktion
Elektrischer Widerstand - 1533. Aufgabe 1_533
AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 1.2
Fragen oder Feedback

Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Startseite
rgb(244,123,130)
Bild
Illustration Poolliegen 1050 x 450
Startseite
Lösungsweg

Aufgabe 1532

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 10. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Funktion

In der nachstehenden Abbildung ist der Graph einer Funktion f mit \(f(x) = {x^{\dfrac{1}{2}}} + b\) und \((a,b \in {\Bbb R},a \ne 0)\) dargestellt. Die Koordinaten der hervorgehobenen Punkte des Graphen der Funktion sind ganzzahlig.

Punkt C C = (4, 4) Punkt C C = (4, 4) Punkt B B = (1, 3) Punkt B B = (1, 3) Punkt A A = (0, 2) Punkt A A = (0, 2) Funktion f f(x) = x^(1 / 2) + 2 f Text1 = "f"


Aufgabenstellung:
Geben Sie die Werte von a und b an!

AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 3.2
Potenzfunktionen
Wurzelfunktionen
Funktion - 1532. Aufgabe 1_532
Fragen oder Feedback
Lösungsweg

Aufgabe 1531

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 11. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Wachstum einer Population

Die Größe einer Population wird in Abhängigkeit von der Zeit mithilfe der Funktion N mit \(N(t) = {N_0} \cdot {e^{0,1188 \cdot t}}\) beschrieben, wobei die Zeit t in Stunden angegeben wird. Dabei bezeichnet N0 die Größe der Population zum Zeitpunkt t=0 und N(t) die Größe der Population zum Zeitpunkt \(t \geqslant 0\).


Aufgabenstellung:
Bestimmen Sie denjenigen Prozentsatz p, um den die Population pro Stunde wächst!
p≈ ___ %

Exponentielles Wachstum
Wachstum einer Population - 1531. Aufgabe 1_531
AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 5.3
Fragen oder Feedback
Lösungsweg

Aufgabe 1530

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 12. Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Winkelfunktionen

Gegeben sind die Funktionen f und g mit \(f(x) = - \sin (x)\) bzw. \(g(x) = \cos (x)\).


Aufgabenstellung:
Geben Sie an, um welchen Wert \(b \in [0;2\pi ]\) in rad der Graph von f verschoben werden muss, um den Graphen von g zu erhalten, sodass \(-sin\left( {x + b} \right) = cos\left( x \right)\) gilt!

Periodendauer
Winkelfunktionen - 1530. Aufgabe 1_530
AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 6.5
Fragen oder Feedback

Seitennummerierung

  • Aktuelle Seite 1
  • Page 2
  • Nächste Seite
  • Letzte Seite

maths2mind®

Kostenlos und ohne Anmeldung
Lehrstoff und Aufgabenpool

verständliche Erklärungen
schneller Lernerfolg
mehr Freizeit

/
Bild
Illustration - Lady with Tablet
/

Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

  • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
  • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
  • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
  • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
  • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
  • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
  • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
  • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
  • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
  • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
  • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
  • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
  • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
  • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
  • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

/

Fußzeile

  • FAQ
  • Über maths2mind
  • Cookie Richtlinie
  • Datenschutz
  • Impressum
  • AGB
  • Blog

© 2022 maths2mind GmbH