Headerbar Werbung für Region "nicht-DACH"
Österreichische BHS Matura - 2019.05.08 - HAK - 3 Teil B Beispiele
Aufgabe 4349
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil a
In der nachstehenden Abbildung ist der Graph der Preisfunktion der Nachfrage p für Betonrohre des Modells A dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe der obigen Abbildung eine Gleichung der Preisfunktion der Nachfrage p.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie den Wert der Steigung von p im gegebenen Sachzusammenhang.
[1 Punkt]
Die Betonrohre des Modells A werden um € 32 pro Stuck verkauft.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die zugehörige Anzahl der nachgefragten Betonrohre des Modells A.
[1 Punkt]
Banner Werbung für Region AT
maths2mind
Kreditkarte? - Braucht man nicht!
Kostenpflichtige Pakete? Gibt es nicht!
Nach der Prüfung genießt du mit dem gesparten Geld deinen Erfolg

Aufgabe 4350
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil b
Für Betonrohre des Modells B geht man von einer kubischen Gewinnfunktion G aus.
x | Absatzmenge in ME |
G(x) | Gewinn bei der Absatzmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Aussagen jeweils die zutreffende Gleichung aus A bis D zu.
[2 zu 4] [1 Punkt]
- Aussage 1: Der Break-even-Point liegt bei 200 ME.
- Aussage 2: Das Gewinnmaximum liegt bei 200 ME.
- Gleichung A: G(0)=200
- Gleichung B: G(200)=0
- Gleichung C: G'(200)=0
- Gleichung D: G''(200)=0
Aufgabe 4351
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil c
Für Betonrohre des Modells C geht man von einer kubischen Kostenfunktion K aus.
\(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
x |
Produktionsmenge in ME |
K(x) |
Kosten bei der Produktionsmenge x in GE |
- Die Fixkosten betragen 150 GE.
- Bei einer Produktion von 20 ME ergeben sich Kosten von 530 GE.
- Bei einer Produktion von 10 ME ergeben sich Grenzkosten von 17 GE/ME.
- Bei einer Produktion von 30 ME ergeben sich Stückkosten von 22 GE/ME.
1. Teilaufgabe - Bearbeitungszeit 17:00
Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten a, b, c und d.
[3 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie diese Koeffizienten.
[1 Punkt]
Aufgabe 4352
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil d
Der Durchmesser von Betonrohren des Modells D kann als annähernd normalverteilt mit dem Erwartungswert μ = 100 mm angenommen werden. Bei 3 % der Rohre ist der Durchmesser kleiner als 98 mm.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die zugehörige Standardabweichung σ . [1 Punkt]
Aufgabe 4353
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Küchenkauf - Aufgabe B_453
Frau Tomić will eine neue Küche um € 30.000 kaufen.
Teil a
Um sich die Küche leisten zu können, hat sie vor 7 Jahren, vor 4 Jahren und vor 1 Jahr jeweils € 3.000 auf ein Sparbuch mit fixem Zinssatz eingezahlt. Nun befinden sich € 10.000 auf dem Sparbuch.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den zugrunde liegenden Jahreszinssatz.
[1 Punkt]
Bei diesem Sparvorgang wurden jährlich 25 % Kapitalertragssteuer (KESt) abgezogen.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Jahreszinssatz des Sparbuchs vor Abzug der KESt.
[1 Punkt]
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 4354
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Küchenkauf - Aufgabe B_453
Teil b
Frau Tomić benötigt für den Kauf der Küche einen Kredit in Höhe von € 20.000. Ein Bekannter von Frau Tomić bietet an, ihr das Geld zu einem fixen Zinssatz von 4 % p. a. zu leihen. Für die
Rückzahlung vereinbaren sie, dass am Ende des 1. Semesters nur die Zinsen zu bezahlen sind, danach sind Semesterraten in Hohe von jeweils € 2.000 fällig.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den äquivalenten Semesterzinssatz.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 11:20
Vervollständigen Sie die Zeilen für die Semester 1 und 2 des nachstehenden Tilgungsplans.
[2 Punkte]
Semester | Zinsanteil | Tilgungsanteil | Semesterrate | Restschuld |
0 | --- | --- | --- | € 20.000 |
1 | ||||
2 |
3. Teilaufgabe - Bearbeitungszeit 05:40
Erklären Sie, warum die folgende Behauptung richtig ist: „Eine Verdoppelung der Semesterrate
führt nicht zu einer Verdoppelung des Tilgungsanteils.“
[1 Punkt]
Aufgabe 4355
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Küchenkauf - Aufgabe B_453
Teil c
Für einen Kredit in Höhe von € 20.000 holt Frau Tomić ein Angebot von einer Bank ein. Die Bank schlagt für die Rückzahlung nachschüssige Jahresraten in Höhe von jeweils € 3.000 bei einem Jahreszinssatz i vor.
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie eine Formel zur Berechnung der Restschuld S nach t Jahren.
S =
[1 Punkt]
Aufgabe 4359
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Speiseeis - Aufgabe B_455
Teil a
Ein Restaurant stellt nach eigener Rezeptur Speiseeis für Nachspeisen her. Aus den 6 Rohstoffen Milch, Obers, Eier, Zucker, Schokolade und Vanille werden die 2 Zwischenprodukte Schokoladeeis und Vanilleeis hergestellt. Die Mengen in Gramm für die Herstellung jeweils einer Portion Eis sind in der nachstehenden Tabelle angegeben.
Schokoladeeis Z1 | Vanilleeis Z2 | |
Milch R1 | 10 | 25 |
Obers R2 | 40 | 30 |
Eier R3 | 20 | 15 |
Zucker R4 | 5 | 10 |
Schokolade R5 | 20 | 0 |
Vanille R6 | 0 | 10 |
Das Schokoladeeis und das Vanilleeis werden für die Nachspeisen Früchtebecher und Bananensplit verwendet. Die dazu jeweils benötigten Eisportionen sind in der nachstehenden Tabelle angegeben.
Früchtebecher E1 | Bananensplit E2 | |
Schokoladeeis Z1 | 2 | 0 |
Vanilleeis Z2 | 1 | 3 |
Die Verflechtung, die den Bedarf an Rohstoffen für jeweils eine Nachspeise angibt, kann durch die Verflechtungsmatrix V beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die Verflechtungsmatrix V.
[1 Punkt]
Das Restaurant benötigt täglich 50 Früchtebecher und 30 Bananensplits.
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie denjenigen Vektor, der den täglichen Bedarf an Rohstoffen angibt.
[1 Punkt]
3. Teilaufgabe
Durchsprache vom Leontief Modell - kam so nicht zur Matura !!
Aufgabe 4360
tandardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Speiseeis - Aufgabe B_455
Teil b
Die Verflechtung kann auch durch einen Gozinto-Graphen dargestellt werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie im obigen unvollständigen Gozinto-Graphen die fehlenden Zahlen in die entsprechenden Kästchen ein.
[1 Punkt]
Banner Werbung für Region DE
Schon den nächsten Urlaub im Süden geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...

Aufgabe 4361
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Speiseeis - Aufgabe B_455
Teil c
Die Preise für die Rohstoffe können in einem Vektor
\(\overrightarrow p = \left( {\begin{array}{*{20}{c}} {{p_1}}\\ {{p_2}}\\ {{p_3}}\\ {{p_4}}\\ {{p_5}}\\ {{p_6}} \end{array}} \right)\)
zusammengefasst werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Beschreiben Sie, was durch den Ausdruck \({\overrightarrow p ^T} \cdot V\) im gegebenen Sachzusammenhang berechnet wird.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die richtige Zeilen- und Spaltenanzahl der Matrix \({\overrightarrow p ^T} \cdot V\) an.
[1 aus 5] [1 Punkt]
- Aussage 1: 1x2-Matrix
- Aussage 2: 2x1-Matrix
- Aussage 3: 2x6 Matrix
- Aussage 4: 6x1 Matrix
- Aussage 5: 6x2 Matrix
Aufgabe 4362
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Speiseeis - Aufgabe B_455
Teil d
Nach einer längeren Lagerung der Milch und der Eier besteht die Gefahr, dass diese Rohstoffe zu einem bestimmten Zeitpunkt t verdorben sind.
- A bezeichnet das Ereignis, dass die Milch zum Zeitpunkt t verdorben ist. Das Ereignis A tritt mit einer Wahrscheinlichkeit von 1 % ein.
- B bezeichnet das Ereignis, dass die Eier zum Zeitpunkt t verdorben sind. Das Ereignis B tritt mit einer Wahrscheinlichkeit von 2 % ein.
- Mit einer Wahrscheinlichkeit von 0,5 % sind beide Rohstoffe zum Zeitpunkt t verdorben.
Die Wahrscheinlichkeiten für die möglichen Ereignisse können in einer Vierfeldertafel dargestellt werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Vervollständigen Sie die nachstehende Vierfeldertafel so, dass sie den beschriebenen Sachverhalt wiedergibt.
[1 Punkt]
A | nicht A | Summe | |
B | |||
nicht B | |||
Summe |
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeigen Sie, dass die beiden Ereignisse A und B voneinander abhängig sind.
[1 Punkt]