Headerbar Werbung für Region "nicht-DACH"
Österreichische AHS Matura - 2016.09.20 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1517
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften von Zahlen
Nachstehend sind Aussagen über Zahlen und Zahlenmengen angeführt
- Aussage 1: Die Quadratwurzel jeder natürlichen Zahl ist eine irrationale Zahl.
- Aussage 2: Jede natürliche Zahl kann als Bruch in der Form \(\dfrac{a}{b}\) mit \(a \in {\Bbb Z}\) und \(b \in {\Bbb Z}\backslash \left\{ 0 \right\}\) dargestellt werden
- Aussage 3: Das Produkt zweier rationaler Zahlen kann eine natürliche Zahl sein.
- Aussage 4: Jede reelle Zahl kann als Bruch in der Form \(\dfrac{a}{b}\) mit \(a \in {\Bbb Z}\) und \(b \in {\Bbb Z}\backslash \left\{ 0 \right\}\) dargestellt werden
- Aussage 5: Es gibt eine kleinste ganze Zahl.
Aufgabenstellung
Kreuzen Sie die beiden zutreffenden Aussagen an!
Banner Werbung für Region AT
maths2mind
Kreditkarte? - Braucht man nicht!
Kostenpflichtige Pakete? Gibt es nicht!
Nach der Prüfung genießt du mit dem gesparten Geld deinen Erfolg

Aufgabe 1516
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssystem
Gegeben ist ein Gleichungssystem aus zwei linearen Gleichungen in den Variablen \(x,y \in {\Bbb R}\)
\(\begin{array}{*{20}{r}} {I:}&x& + &{4y}& = &{ - 8}&{}\\ {II:}&{ax}& + &{6y}& = &c&{{\rm{mit }}{\,\,a,c \in {\Bbb R}} } \end{array}\)
Aufgabenstellung:
Ermitteln Sie diejenigen Werte für a und c, für die das Gleichungssystem unendlich viele Lösungen hat!
Aufgabe 1515
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 3. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
In der Ebene werden auf einer Geraden in gleichen Abständen nacheinander die Punkte A, B, C und D markiert. Es gilt also: \(\overrightarrow {AB} = \overrightarrow {BC} = \overrightarrow {CD} \)
Die Koordinaten der Punkte A und C sind bekannt. \(A = \left( {\left. 3 \right|1} \right);\,\,\,\,\,C = \left( {7\left| 8 \right.} \right)\)
Aufgabenstellung:
Berechnen Sie die Koordinaten von D!
Aufgabe 1514
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Geradengleichung
Die Gerade g ist durch eine Parameterdarstellung \(g:X = \left( {\begin{array}{*{20}{c}} 2\\ 6 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 3\\ { - 5} \end{array}} \right)\) gegeben.
Aufgabenstellung:
Geben Sie mögliche Werte der Parameter a und b so an, dass die durch die Gleichung \(a \cdot x + b \cdot y = 1\) gegebene Gerade h normal zur Geraden g ist!
Aufgabe 1513
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Aufwölbung des Bodensees
Aufgrund der Erdkrümmung ist die Oberfläche des Bodensees gewölbt. Wird die Erde modellhaft als Kugel mit dem Radius R = 6370 km und dem Mittelpunkt M angenommen und aus der Länge der Südost-Nordwest-Ausdehnung des Bodensees der Winkel \(\varphi = 0,5846^\circ \) ermittelt, so lässt sich die Aufwölbung des Bodensees näherungsweise berechnen.
Aufgabenstellung:
Berechnen Sie die Aufwölbung des Bodensees (siehe obige Abbildung) in Metern!
Auswölbung = h Meter
Banner Werbung für Region AT
maths2mind
Kreditkarte? - Braucht man nicht!
Kostenpflichtige Pakete? Gibt es nicht!
Nach der Prüfung genießt du mit dem gesparten Geld deinen Erfolg

Aufgabe 1512
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkel bestimmen
Für einen Winkel \(\alpha \in \left[ {0^\circ ;360^\circ } \right]\) gilt: \(\sin \left( \alpha \right) = 0,4\) und \(\cos \left( \alpha \right) < 0\)
Aufgabenstellung:
Berechnen Sie den Winkel \(\alpha\) in Grad!
Aufgabe 1511
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Daten aus einem Diagramm ablesen
Ein Motorradfahrer fährt dieselbe Strecke (560 km) wie ein Autofahrer. Die beiden Bewegungen werden im nachstehenden Zeit-Weg-Diagramm modellhaft als geradlinig angenommen. Die hervorgehobenen Punkte haben ganzzahlige Koordinaten.
- Aussage 1: Der Motorradfahrer fährt drei Stunden nach der Abfahrt des Autofahrers los.
- Aussage 2: Das Motorrad hat eine Durchschnittsgeschwindigkeit von 100 km/h.
- Aussage 3: Wenn der Autofahrer sein Ziel erreicht, ist das Motorrad davon noch 120 km entfernt.
- Aussage 4: Die Durchschnittsgeschwindigkeit des Autos ist um 40 km/h niedriger als jene des Motorrads.
- Aussage 5: Die Gesamtfahrzeit des Motorradfahrers ist für diese Strecke größer als jene des Autofahrers.
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die eine korrekte Interpretation des Diagramms darstellen!
Aufgabe 1510
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen und Funktionstypen
Im Folgenden sind sechs Funktionstypen angeführt, wobei die Parameter \(a,b \in {{\Bbb R}^ + }\) sind
A | \(f\left( x \right) = a \cdot {b^x}\) |
B | \(f\left( x \right) = a \cdot {x^{\dfrac{1}{2}}}\) |
C | \(f\left( x \right) = a \cdot \dfrac{1}{{{x^2}}}\) |
D | \(f\left( x \right) = a \cdot {x^2} + b\) |
E | \(f\left( x \right) = a \cdot {x^3}\) |
F | \(f\left( x \right) = a \cdot x + b\) |
Weiters sind die Graphen von vier Funktionen dargestellt.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Ordnen Sie den vier Graphen 1, 2, 3 und 4 jeweils den entsprechenden Funktionstyp (aus A bis F) zu!
Aufgabe 1509
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 9. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsgleichung einer linearen Funktion
Gegeben ist eine lineare Funktion f mit folgenden Eigenschaften:
- Wenn das Argument x um 2 zunimmt, dann nimmt der Funktionswert f(x) um 4 ab.
- f(0)=1
Aufgabenstellung:
Geben Sie eine Funktionsgleichung dieser linearen Funktion an
Banner Werbung für Region CH
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 1508
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion vom Grad n
Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f. Alle charakteristischen Punkte des Graphen (Schnittpunkte mit den Achsen, Extrempunkte, Wendepunkte) sind in dieser Abbildung enthalten.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Die Polynomfunktion f ist vom Grad___1___ , weil f genau ___2___ hat.
1 | |
\(n < 3\) | A |
\(n = 3\) | B |
\(n > 3\) | C |
2 | |
eine Extremstelle | I |
zwei Wendestellen | II |
zwei Nullstellen | III |
Aufgabe 1507
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bienenbestand
Wegen eines Umweltgifts nimmt der Bienenbestand eines Imkers täglich um einen fixen Prozentsatz ab. Der Imker stellt fest, dass er innerhalb von 14 Tagen einen Bestandsverlust von 50 % erlitten hat.
Aufgabenstellung:
Berechnen Sie den täglichen relativen Bestandsverlust in Prozent!
Aufgabe 1506
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Periodische Funktion
Gegeben ist die periodische Funktion f mit der Funktionsgleichung \(f\left( x \right) = \sin \left( x \right)\)
Aufgabenstellung:
Geben Sie die kleinste Zahl a > 0 (Maßzahl für den Winkel in Radiant) so an, dass für alle \(x \in {\Bbb R}\) die Gleichung \(f\left( {x + a} \right) = f\left( x \right)\) gilt!