Österreichische BHS Matura - 2018.05.09 - HUM & HLFS - 3 Teil B Beispiele
Aufgabe 4083
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Smartphones - Aufgabe B_079
Der Akku eines Smartphones entlädt sich aufgrund von Hintergrundanwendungen auch dann, wenn das Gerät nicht aktiv benutzt wird.
Teil a
Für ein bestimmtes Smartphone wird die zeitliche Entwicklung des Akku-Ladestands in Prozent beobachtet. Zur Zeit t = 0 ist der Akku vollständig aufgeladen.
Zeit t in Stunden | Akku-Ladestand in Prozent |
0 | 100 |
3 | 94 |
6 | 81 |
10 | 71 |
18 | 43 |
Die zeitliche Entwicklung des Akku-Ladestands in Prozent soll beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie eine Gleichung der zugehörigen linearen Regressionsfunktion.
[1 Punkt]
Bei einem Akku-Ladestand von 15 % sollte das Smartphone wieder ans Stromnetz angeschlossen werden.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viele Stunden nach dem vollständigen Aufladen dies gemäß diesem linearen Regressionsmodell gemäß Teil a der Fall ist.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 4084
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Smartphones - Aufgabe B_079
Der Akku eines Smartphones entlädt sich aufgrund von Hintergrundanwendungen auch dann, wenn das Gerät nicht aktiv benutzt wird.
Teil b
Die zeitliche Entwicklung des Akku-Ladestands beim Aufladen lasst sich näherungsweise durch die Funktion A beschreiben:
\(A\left( t \right) = 100 - 85 \cdot {e^{ - \lambda \cdot t}}\)
- t ... Zeit nach Beginn des Aufladens in h
- A(t) ... Akku-Ladestand zur Zeit t in Prozent
- \(\lambda \) ... positiver Parameter
1. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie mathematisch, dass sich die Funktionswerte von A mit wachsendem t dem Wert 100 annähern.
[1 Punkt]
2 Stunden nach Beginn des Aufladens betragt der Akku-Ladestand 80 %.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie λ.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, zu welcher Zeit nach Beginn des Aufladens der Akku-Ladestand 90 % beträgt.
[1 Punkt]
Aufgabe 4085
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Smartphones - Aufgabe B_079
Teil c
Die Entwicklung der weltweiten Verkaufszahlen von Smartphones kann modellhaft durch die Funktion S beschrieben werden:
\(S\left( t \right) = \dfrac{{1918}}{{1 + 4,84 \cdot {e^{ - 0,54 \cdot t}}}}\)
- t ... Zeit in Jahren (t = 0 entspricht dem Beginn des Jahres 2010)
- S(t) ... Anzahl der bis zur Zeit t insgesamt verkauften Smartphones in Millionen Stück
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe dieses Modells die Anzahl der bis zum Beginn des Jahres 2020 insgesamt verkauften Smartphones.
[1 Punkt]
Im nachstehenden Diagramm ist der Graph der Ableitungsfunktion S′ dargestellt. Auf dem Graphen von S′ ist der Hochpunkt H markiert.
2. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie die mathematische Bedeutung der Stelle t = 2,9 in Bezug auf die Funktion S. [1 Punkt]
Aufgabe 4105
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil a
Ein Unternehmen stellt Kunststoffrohre her, die zu einem fixen Preis verkauft werden. Im nachstehenden Diagramm ist der Graph der Kostenfunktion K für die Herstellung der Kunststoffrohre dargestellt.
Der Break-even-Point liegt bei einer Produktion von 8 ME. Die Kosten betragen dabei 400 GE.
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie den Graphen der Erlösfunktion E im obigen Diagramm ein.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den zugehörigen Marktpreis.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie in der nachstehenden Wertetabelle die fehlenden Werte für die zugehörige Gewinnfunktion G.
[1 Punkt]
x in ME | 0 | 8 | 16 |
G(x) in GE0 | 0 |
Aufgabe 4106
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil b
Die Grenzkostenfunktion K′ für die Herstellung von Kunststoffrohren ist gegeben durch:
\(K'\left( x \right) = \dfrac{{15}}{{32}} \cdot {x^2} - \dfrac{{35}}{4} \cdot x + 60\)
x | produzierte Menge in ME |
K'(x) |
Grenzkosten bei der produzierten Menge x in GE/ME |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Kostenfunktion K mit K(16) = 600.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Kostenkehre.
[1 Punkt
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 4107
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil c
Ein anderes Unternehmen stellt Keramikrohre her. Von der quadratischen Erlösfunktion E ist für den Absatz von 10 ME bekannt:
- E(10) = 15
- E′(10) = –1,5
- E″(10) = –0,6
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die zutreffende Aussage über den Erlös bei einem Absatz von 11 ME an.
[1 aus 5] [1 Punkt]
- Aussage 1: E(11)=13,2
- Aussage 2: E(11)=13,5
- Aussage 3: E(11)=14,1
- Aussage 4: E(11)=16,2
- Aussage 5: E(11)=16,5
Aufgabe 4108
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil d
Die Erlösfunktion E für Betonrohre ist gegeben durch:
\(E\left( x \right) = - 3,2 \cdot x \cdot \left( {x - 25} \right)\)
mit
x | Absatzmenge in ME |
E(x) | Erlös bei der Absatzmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Preisfunktion der Nachfrage.
[1 Punkt]
2 Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Höchstpreis.
[1 Punkt]
Aufgabe 4109
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil a
Die Preise von Baugrundstücken sind in den letzten Jahren erheblich gestiegen. Herr Pfeifer hat ein Grundstück um € 228.000 gekauft. Nach der Umwidmung in ein Baugrundstück kann er es 4 Jahre später um € 753.000 verkaufen.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den mittleren jährlichen Zinssatz des eingesetzten Kapitals ohne Berücksichtigung von Spesen, Gebühren und Steuern.
[1 Punkt]
Aufgabe 4110
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil b
Frau Maier möchte ein Baugrundstück verkaufen. Sie bekommt zwei Angebote.
- Herr Altmann bietet € 150.000 sofort bei Vertragsabschluss und € 50.000 nach 2 Jahren.
- Frau Bogner bietet € 202.000 ein Jahr nach Vertragsabschluss.
Frau Maier vergleicht die beiden Angebote.
1. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie für einen Zinssatz von 3 % p. a. nach, dass sich die beiden Angebote zum Zeitpunkt des Vertragsabschlusses um rund € 1.013 unterscheiden.
[1 Punkt]
Für die beiden Angebote wird folgende Gleichung aufgestellt:
\(150000 \cdot {x^2} + 50000 = 202000 \cdot x\)
Eine Lösung dieser Gleichung ist x ≈ 1,0198.
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung von x im gegebenen Sachzusammenhang.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 4111
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil c
Herr Müller nimmt für den Kauf eines Baugrundstücks einen Kredit in Höhe von € 100.000 auf. Der vereinbarte Zinssatz betragt 3 % p. a. Der Kredit soll durch die auf der nachstehenden Zeitachse dargestellten Zahlungen vollständig getilgt werden.
Die Zahlungen R können als nachschüssige Rente aufgefasst werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Markieren Sie auf der Zeitachse den Bezugszeitpunkt für den Barwert dieser nachschüssigen Rente.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Höhe der Zahlungen R.
[1 Punkt]
Aufgabe 4112
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil d
Frau Marth nimmt für den Kauf eines Baugrundstücks einen Kredit in Höhe von € 120.000 mit jährlich nachschüssigen Kreditrückzahlungen auf. Der vereinbarte Zinssatz beträgt 2,5 % p. a. Für die ersten zwei Jahre vereinbart Frau Marth Sonderbedingungen, die im nachstehenden Tilgungsplan dargestellt sind.
Jahr | Zinsanteil | Tilgungsanteil | Annuität | Restschuld |
0 | € 120.000 | |||
1 | ? | € 0,00 | € 123.000 | |
2 | € 0,00 | ? | € 123.000 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Beträge für die beiden grau markierten Zellen im obigen Tilgungsplan.
[1 Punkt]
Ab dem Jahr 3 werden jährliche Annuitäten in Hohe von € 10.000 bezahlt.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viele volle Annuitäten in Hohe von € 10.000 bezahlt werden müssen.
[1 Punkt]