Österreichische BHS Matura - 2022.01.12 - HTL 1
Aufgabe 4540
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zebraschnecken – Aufgabe B_532
Um das Wanderverhalten von Zebraschnecken zu untersuchen, wird eine Versuchsfläche, auf der solche Schnecken leben, beobachtet.
Teil a
Die unten stehende Abbildung zeigt die Positionen der Zebraschnecke A an vier aufeinanderfolgenden Tagen in einem Koordinatensystem (Einheiten in Metern). Die Punkte A1, A2, A3 und A4 sind dabei die Positionen der Zebraschnecke A zu Beginn des 1., 2., 3. bzw. 4. Tages.
Illustration fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie den Vektor vom Punkt A2 zum Punkt A3 an.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Entfernung, die die Zebraschnecke zurückgelegt hat, wenn sie auf dem kürzesten Weg von A2 nach A3 gekrochen ist.
[0 / 1 P.]
Zu Beginn des 5. Tages befindet sich die Zebraschnecke im Punkt A5. Es gilt:
\(\overrightarrow {{A_4}{A_5}} = \left( {\begin{array}{*{20}{c}} { - 1} \\ 3 \end{array}} \right)\)
3. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie in der obigen Abbildung den Punkt A5 ein.
Illustration fehlt
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4541
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zebraschnecken – Aufgabe B_532
Um das Wanderverhalten von Zebraschnecken zu untersuchen, wird eine Versuchsfläche, auf der solche Schnecken leben, beobachtet.
Teil b
Die nachstehende Abbildung zeigt die Position der Zebraschnecke B an vier aufeinander folgenden Tagen. Die Punkte B1, B2, B3 und B4 sind dabei die Positionen der Zebraschnecke B zu Beginn des 1., 2., 3. bzw. 4. Tages.
Illustration fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Überprüfen Sie rechnerisch, ob der Winkel α ein rechter Winkel ist.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Winkel β.
[0 / 1 P.]
Aufgabe 4533
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Körpermaße – Aufgabe B_533
Teil a
Die Oberarmlänge von Burschen einer bestimmten Altersgruppe kann als annähernd normalverteilt angenommen werden. Der Erwartungswert μ beträgt 34,7 cm, die Standardabweichung σ betragt 0,4 cm.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Wahrscheinlichkeit, dass die Oberarmlänge eines zufällig ausgewählten Burschen dieser Altersgruppe mindestens 34,4 cm betragt.
[0 / 1 P.]
Aufgabe 4534
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Körpermaße – Aufgabe B_533
Teil b
Von 9 zufällig ausgewählten Mädchen einer anderen Altersgruppe wurden die Oberarmlänge und die Körpergröße gemessen:
Körpergröße in cm | 165 | 164 | 166 | 159 | 163 | 170 | 158 | 168 | 172 |
Oberarmlänge in cm | 34,5 | 34,7 | 34,6 | 34,0 | 34,5 | 35,0 | 33,8 | 34,9 | 34,9 |
Die Oberarmlänge soll in Abhängigkeit von der Körpergröße näherungsweise durch die lineare Funktion g beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion g auf.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Beurteilen Sie mithilfe des Korrelationskoeffizienten, ob die lineare Funktion g ein geeignetes Modell zur Beschreibung dieser Abhängigkeit ist.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie den Wert der Steigung der linearen Funktion g im gegebenen Sachzusammenhang.
[0 / 1 P.]
Aufgabe 4535
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Körpermaße – Aufgabe B_533
Teil c
Der Median des Körperfettanteils von Burschen ist altersabhängig (siehe nachstehende Tabelle).
Alter in Jahren | 10 | 12 | 14 | 16 |
Median des Körperfettanteils in % | 18,9 | 17,8 | 14,1 | 15,7 |
Der Median des Körperfettanteils kann in Abhängigkeit vom Alter t durch die Polynomfunktion 3. Grades f mit
\(f\left( t \right) = a \cdot {t^3} + b \cdot {t^2} + c \cdot t + d\)
modelliert werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten von f.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie diese Koeffizienten.
[0 / 1 P.]
Eine Polynomfunktion 3. Grades h mit
\(h\left( x \right) = {a_1} \cdot {x^3} + {b_1} \cdot {x^2} + {c_1} \cdot x + {d_1}\)
hat 2 lokale Extremstellen.
3. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie an, welches Vorzeichen die Diskriminante der Gleichung h′(x) = 0 haben muss. Begründen Sie Ihre Entscheidung.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 5615
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Seifenkisten – Aufgabe B_535
Seifenkisten sind einfache Fahrzeuge ohne Motor.
Teil a
Ein spezielles Lenksystem für Seifenkisten hat die Form eines Vierecks (siehe nachstehende Abbildungen).
Abbildung fehlt
Es gilt: a = 60 cm, v = 96 cm, k = 13 cm.
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie s.
[0 / 1 / 2 P.]
Beim Lenken ändert sich die Form des Vierecks (siehe nachstehende Abbildung).
Abbildung fehlt
2. Teilaufgabe - Bearbeitungszeit 05:40
Kennzeichnen Sie in der obigen Abbildung den Winkel α, für den gilt:
\(\alpha = \arccos \left( {\dfrac{{{k^2} + {s^2} - \left( {{a^2} + {k^2}} \right)}}{{2 \cdot s \cdot k}}} \right)\)
[0 / 1 P.]
Aufgabe 5616
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Seifenkisten – Aufgabe B_535
Seifenkisten sind einfache Fahrzeuge ohne Motor.
Teil b
Ein Rad einer bestimmten Seifenkiste hat einen Außendurchmesser von 45 cm. Die Seifenkiste erreicht eine Geschwindigkeit von 36 km/h.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Anzahl der Umdrehungen pro Minute, die das Rad bei dieser Geschwindigkeit macht.
[0 / 1 P.]
Aufgabe 5617
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Seifenkisten – Aufgabe B_535
Seifenkisten sind einfache Fahrzeuge ohne Motor.
Teil c
Die Seitenflächen einer Seifenkiste werden bemalt. Die bemalte Fläche ist in der untenstehenden Abbildung grau markiert.
- Die obere Begrenzungslinie der bemalten Flache wird im Intervall [0; 8] mithilfe der Funktion f beschrieben.
- Die untere Begrenzungslinie der bemalten Flache wird im Intervall [1; 8] mithilfe der Funktion g beschrieben.
Abbildung fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe von f und g eine Formel zur Berechnung des Inhalts A der grau markierten
Flache auf.
A =
[0 / 1 P.]
Die Funktion g mit \(g\left( x \right) = a \cdot \ln \left( x \right)\) hat an der Stelle 5 den Funktionswert \(\dfrac{{13}}{6}\)
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie den Parameter a.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie diejenige Stelle, an der die Funktion g einen Steigungswinkel von 30° hat.
[0 / 1 P.]
Aufgabe 5618
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Seifenkisten – Aufgabe B_535
Seifenkisten sind einfache Fahrzeuge ohne Motor.
Teil d
Der zeitliche Verlauf der Geschwindigkeit einer bestimmten Seifenkiste im Zeitintervall [1; 15] kann näherungsweise durch die Exponentialfunktion v beschrieben werden (siehe nachstehende Abbildung).
Illustration fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Kennzeichnen Sie in der obigen Abbildung diejenige Zeit, zu der die Geschwindigkeit nur noch halb so hoch wie zur Zeit t = 1 s ist.
[0 / 1 P.]
Zur Zeit t = 1 s wurde eine Geschwindigkeit von 8 m/s gemessen. Zur Zeit t = 15 s wurde eine Geschwindigkeit von 1 m/s gemessen. Es gilt:
\(v\left( t \right) = c \cdot {a^t}\)
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Parameter a und c der Exponentialfunktion v.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.