BMBWF - WS 3.1 .. WS 3.4: Wahrscheinlichkeitsverteilung(en)
Aufgabe 1015
AHS - 1_015 & Lehrstoff: WS 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wahl
Bei einer Befragung von 2 000 zufällig ausgewählten wahlberechtigten Personen geben 14 % an, dass sie bei der nächsten Wahl für die Partei „Alternatives Leben“ stimmen werden. Aufgrund dieses Ergebnisses gibt ein Meinungsforschungsinstitut an, dass die Partei mit 12 % bis 16 % der Stimmen rechnen kann.
Aufgabenstellung:
Mit welcher Sicherheit kann man diese Behauptung aufstellen?
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1043
AHS - 1_043 & Lehrstoff: WS 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wahrscheinlichkeitsverteilung
Gustav kommt in der Nacht nach Hause und muss im Dunkeln die Haustüre aufsperren. An seinem ringförmigen Schlüsselbund hängen fünf gleiche Schlüsseltypen, von denen nur einer sperrt. Er beginnt die Schlüssel zufällig und nacheinander zu probieren. Die Zufallsvariable X gibt die Anzahl k der Schlüssel an, die er probiert, bis die Tür geöffnet ist.
k | 1 | 2 | 3 | 4 | 5 |
\(P\left( {X = k} \right)\) |
Aufgabenstellung:
Ergänzen Sie in der Tabelle die fehlenden Wahrscheinlichkeiten und ermitteln Sie den Erwartungswert E(X) dieser Zufallsvariablen X!
Aufgabe 1045
AHS - 1_045 & Lehrstoff: WS 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Testung
Es werden zwei Tests TX und TY, bei denen man jeweils maximal zehn Punkte erwerben kann, auf ihre Lösungshäufigkeit untersucht. Bei mehr als fünf Punkten gilt der jeweilige Test als bestanden. Die Zufallsvariablen X und Y beschreiben die Anzahl der erreichten Punkte. Die beiden untenstehenden Abbildungen zeigen jeweils die Verteilungen der beiden Variablen X und Y.
- Aussage 1: Mit Test TY werden mehr Kandidatinnen/Kandidaten den Test bestehen als mit Test TX.
- Aussage 2: Beide Zufallsvariablen X und Y sind binomialverteilt.
- Aussage 3: Die Erwartungswerte sind gleich: E(X) = E(Y).
- Aussage 4: Die Standardabweichungen sind gleich: σ X = σ Y.
- Aussage 5: Der Test TX unterscheidet besser zwischen Kandidatinnen/Kandidaten mit schlechteren und besseren Testergebnissen.
Aufgabenstellung:
Kreuzen Sie diejenigen zwei Aussagen an, die aus den gegebenen Informationen ablesbar sind!
Aufgabe 1050
AHS - 1_050 & Lehrstoff: WS 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bernoulli-Experiment
Beim Realisieren eines Bernoulli-Experiments tritt Erfolg mit der Wahrscheinlichkeit p mit 0 < p < 1 ein. Die Werte der binomialverteilten Zufallsvariablen X beschreiben die Anzahl der Erfolge beim n-maligen unabhängigen Wiederholen des Experiments. E bezeichnet den Erwartungswert, V die Varianz und σ die Standardabweichung.
- Aussage 1: \(E\left( X \right) = \sqrt {n \cdot p}\)
- Aussage 2: \(V\left( X \right) = n \cdot p \cdot \left( {1 - p} \right)\)
- Aussage 3: \(P\left( {X = 0} \right) = 0\)
- Aussage 4:\(P\left( {X = 1} \right) = p\)
- Aussage5: \(V\left( X \right) = {\sigma ^2}\)
Aufgabenstellung:
Kreuzen Sie die beiden für n > 1 zutreffenden Aussagen an!
Aufgabe 1148
AHS - 1_148 & Lehrstoff: WS 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erwartungswert
In der nachstehenden Tabelle ist die Wahrscheinlichkeitsverteilung einer diskreten Zufallsvariablen X dargestellt.
\({a_i}{\text{ mit }}i \in \left\{ {1,\,\,2,\,\,3,\,\,4} \right\}\) | 1 | 2 | 3 | 4 |
\(P\left( {X = {a_i}} \right)\) | 0,1 | 0,3 | 0,5 | 0,1 |
Aufgabenstellung:
Bestimmen Sie den Erwartungswert E(X) der Zufallsvariablen X!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1044
AHS - 1_044 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Binomialverteilung
Die Zufallsvariable X sei binomialverteilt mit n = 25 und p = 0,15. Es soll die Wahrscheinlichkeit bestimmt werden, sodass die Zufallsvariable X höchstens den Wert 2 annimmt.
- Aussage 1: \(\left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 2: \({0,85^{25}} + \left( {\begin{array}{*{20}{c}} {25} \\ 1 \end{array}} \right) \cdot {0,15^1} \cdot {0,85^{24}} + \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 3: \(\left( {\begin{array}{*{20}{c}} {25} \\ 1 \end{array}} \right) \cdot {0,15^1} \cdot {0,85^{24}} + \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 4: \(1 - \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 5: \(1 - \left[ {{{0,85}^{25}} + \left( {\begin{array}{*{20}{c}} {25} \\ 1 \end{array}} \right) \cdot {{0,15}^1} \cdot {{0,85}^{24}} + \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {{0,15}^2} \cdot {{0,85}^{23}}} \right]\)
- Aussage 6: \(\left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,85^2} \cdot {0,15^{23}}\)
Aufgabenstellung:
Kreuzen Sie den zutreffenden Term an!
Aufgabe 1046
AHS - 1_046 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen einer Binomialverteilung
In den untenstehenden Grafiken sind Binomialverteilungen dargestellt.
Zum Weiterlesen bitte aufklappen:
- Grafik 1:
- Grafik 2:
- Grafik 3:
- Grafik 4:
- Grafik 5:
- Grafik 6:
Aufgabenstellung:
Kreuzen Sie diejenige Grafik an, die einer Binomialverteilung mit n = 20 und p = 0,9 zuzuordnen ist!
Aufgabe 1188
AHS - 1_188 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kennzahlen der Binomialverteilung
Auf einer Sortieranlage werden Flaschen von einem Scanner untersucht und es wird die Art des Kunststoffes ermittelt. 95 % der Flaschen werden richtig erkannt und in die bereitgestellten Behälter einsortiert. Die Werte der Zufallsvariablen X beschreiben die Anzahl der falschen Entscheidungen bei einem Stichprobenumfang von 500 Stück. Verwenden Sie die Binomialverteilung als Modell.
Aufgabenstellung:
Berechnen Sie den Erwartungswert und die Standardabweichung für die Zufallsvariable X!
Aufgabe 1291
AHS - 1_291 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Binomialverteilte Zufallsvariable
Die Zufallsvariable X sei binomialverteilt mit n = 8 und p = 0,25.
x | P(x) |
0 | 0,1001 |
1 | 0,2670 |
2 | 0,3115 |
3 | 0,2076 |
4 | 0,0865 |
5 | 0,0231 |
6 | 0,0038 |
7 | 0,0004 |
8 | 0,00002 |
Aufgabenstellung:
μ ist der Erwartungswert, σ die Standardabweichung der Verteilung.
Berechnen Sie die folgende Wahrscheinlichkeit: \(P\left( {\mu - \sigma < X < \mu + \sigma } \right)\)
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1292
AHS - 1_292 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flaschensortieranlage
Auf einer Sortieranlage werden 500 Flaschen von einem Scanner untersucht – es wird die Art des Kunststoffes ermittelt. p % der Flaschen werden richtig erkannt und in die bereitgestellten Behälter einsortiert. Die Werte der binomialverteilten Zufallsvariablen X beschreiben die Anzahl k der falschen Entscheidungen beim vorgegebenen Stichprobenumfang.
k | P(X=k) |
10 | 0,0003 |
11 | 0,0007 |
12 | 0,0015 |
13 | 0,0029 |
14 | 0,0053 |
15 | 0,009 |
16 | 0,0144 |
17 | 0,0216 |
18 | 0,0305 |
19 | 0,0408 |
20 | 0,0516 |
21 | 0,0621 |
22 | 0,0712 |
23 | 0,0778 |
24 | 0,0814 |
25 | 0,0816 |
26 | 0,0785 |
27 | 0,0725 |
28 | 0,0644 |
29 | 0,0552 |
30 | 0,0456 |
Aufgabenstellung:
Berechnen Sie mithilfe der gegebenen Tabelle die Wahrscheinlichkeit \(P\left( {22 < X \leqslant 27} \right)\)und markieren Sie diese in der Grafik.
Aufgabe 1026
AHS - 1_026 & Lehrstoff: WS 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Binomialverteilung
- Aussage 1: In der Kantine eines Betriebs essen 80 Personen. Am Montag werden ein vegetarisches Gericht und drei weitere Menüs angeboten. Erfahrungsgemäß wählt jede vierte Person das vegetarische Gericht. Es werden 20 vegetarische Gerichte vorbereitet. Wie groß ist die Wahrscheinlichkeit, dass diese nicht ausreichen?
- Aussage 2: Bei einer Lieferung von 20 Mobiltelefonen sind fünf defekt. Es werden drei Geräte gleichzeitig entnommen und getestet. Mit welcher Wahrscheinlichkeit sind mindestens zwei davon defekt?
- Aussage 3: In einer Klasse müssen die Schüler/innen bei der Überprüfung der Bildungsstandards auf einem anonymen Fragebogen ihr Geschlecht (m, w) ankreuzen. Die Wahrscheinlichkeit, das Ankreuzen des Geschlechts nicht durchzuführen, ist für Buben und Mädchen gleich. In der Klasse sind 16 Schülerinnen und 12 Schüler. Fünf Personen haben auf dem Fragebogen das Geschlecht nicht angekreuzt. Mit welcher Wahrscheinlichkeit befinden sich drei Schüler unter den fünf Personen?
- Aussage 4: Ein Großhändler erhält eine Lieferung von 2 000 Mobiltelefonen, von denen erfahrungsgemäß 5 % defekt sind. Mit welcher Wahrscheinlichkeit befinden sich 80 bis 90 defekte Geräte in der Lieferung?
- Aussage 5: In einer Klinik werden 500 kranke Personen mit einem bestimmten Medikament behandelt. Die Wahrscheinlichkeit, dass schwere Nebenwirkungen auftreten, beträgt 0,001. Wie groß ist die Wahrscheinlichkeit, dass bei mehr als zwei Personen schwere Nebenwirkungen auftreten?
Aufgabenstellung:
Kreuzen Sie diejenige(n) Situation(en) an, die mithilfe der Binomialverteilung modelliert werden kann/können!
Aufgabe 1047
AHS - 1_047 & Lehrstoff: WS 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Aufnahmetest
Eine Universität führt einen Aufnahmetest durch. Dabei werden zehn Multiple-Choice-Fragen gestellt, wobei jede Frage vier Antwortmöglichkeiten hat. Nur eine davon ist richtig. In den letzten Jahren wurden durchschnittlich 40 Bewerber/innen aufgenommen. Dabei traten etwa 95 % der angemeldeten Kandidatinnen und Kandidaten tatsächlich zum Aufnahmetest an. Heuer treten 122 Bewerber/innen zu diesem Aufnahmetest an. Nehmen Sie an, dass Kandidat K alle Antworten völlig zufällig ankreuzt.
- Aussage 1: Die Anzahl der angemeldeten Kandidatinnen und Kandidaten, die tatsächlich zum Aufnahmetest erscheinen, ist binomialverteilt mit n = 122 und p = 0,40.
- Aussage 2: Die Anzahl der richtig beantworteten Fragen des Aufnahmetests des Kandidaten K ist binomialverteilt mit n = 10 und p = 0,25.
- Aussage 3: Die durchschnittliche Anzahl der richtig beantworteten Fragen aller angetretenen Kandidatinnen und Kandidaten ist binomialverteilt mit n = 122 und p = 0,40.
- Aussage 4: Die Anzahl der zufällig ankreuzenden Kandidatinnen und Kandidaten, die aufgenommen werden, ist binomialverteilt mit n = 40 und p = 0,25.
- Aussage 5: Die Anzahl der falsch beantworteten Fragen des Aufnahmetests des Kandidaten K ist binomialverteilt mit n = 10 und p = 0,75.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!