Headerbar Werbung für Region "nicht-DACH"
Österreichische AHS Matura - 2018.01.16 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1590
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Anzahl der Personen in einem Autobus
Die Variable F bezeichnet die Anzahl der weiblichen Passagiere in einem Autobus, M bezeichnet die Anzahl der männlichen Passagiere in diesem Autobus. Zusammen mit dem Lenker (männlich) sind doppelt so viele Männer wie Frauen in diesem Autobus. (Der Lenker wird nicht bei den Passagieren mitgezählt.)
- Aussage 1: \(2 \cdot \left( {M + 1} \right) = F\)
- Aussage 2: \(M + 1 = 2 \cdot F\)
- Aussage 3: \(F = 2 \cdot M + 1\)
- Aussage 4: \(F + 1 = 2 \cdot M\)
- Aussage 5: \(M - 1 = 2 \cdot F\)
- Aussage 6: \(2 \cdot F = M\)
Aufgabenstellung:
Kreuzen Sie diejenige Gleichung an, die den Zusammenhang zwischen der Anzahl der Frauen und der Anzahl der Männer in diesem Autobus richtig beschreibt!
Banner Werbung für Region DE
Schon den nächsten Urlaub im Süden geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...

Aufgabe 1591
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrzeit von Zügen
Um 8:00 Uhr fahrt ein Güterzug von Salzburg in Richtung Linz ab. Vom 124 km entfernten Bahnhof Linz fahrt eine halbe Stunde später ein Schnellzug Richtung Salzburg ab. Der Güterzug bewegt sich mit einer mittleren Geschwindigkeit von 100 km/h, die mittlere Geschwindigkeit des Schnellzugs ist 150 km/h.
Aufgabenstellung:
Mit t wird die Fahrzeit des Güterzugs in Stunden bezeichnet, die bis zur Begegnung der beiden Zuge vergeht. Geben Sie eine Gleichung für die Berechnung der Fahrzeit t des Güterzugs an und berechnen Sie diese Fahrzeit!
Aufgabe 1592
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösungen einer quadratischen Gleichung
Eine Gleichung, die man auf die Form \(a \cdot {x^2} + b \cdot x + c = 0{\text{ mit }}a,b,c \in {\Bbb R}\)umformen kann, nennt man quadratische Gleichung in der Variablen x mit den Koeffizienten a, b, c.
Aufgabenstellung:
Ergänzen Sie die Textlichen im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Eine quadratische Gleichung der Form \(a \cdot {x^2} + b \cdot x + c = 0\)mit ____1____ hat in jedem Fall _____2____
1 | |
a>0 und c>0 | A |
a>0 und c<0 | B |
a<0 und c<0 | C |
2 | |
zwei verschiedene reelle Lösungen | A |
genau eine reelle Lösung | B |
keine reelle Lösung | C |
Aufgabe 1593
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Orthogonale Vektoren
Gegeben sind die nachstehend angeführten Vektoren:
\(\begin{array}{l} \overrightarrow a = \left( {\begin{array}{*{20}{c}} 2\\ 3 \end{array}} \right)\\ \overrightarrow b = \left( {\begin{array}{*{20}{c}} x\\ 0 \end{array}} \right)\\ \overrightarrow c = \left( {\begin{array}{*{20}{c}} 1\\ { - 2} \end{array}} \right)\\ \overrightarrow d = \overrightarrow a - \overrightarrow b \end{array}\)
Aufgabenstellung:
Berechnen Sie \(x \in {\Bbb R}\) so, dass die Vektoren \(\overrightarrow c\) und \(\overrightarrow d\) aufeinander normal stehen!
Aufgabe 1594
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 5. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gefälle einer Regenrinne
Eine Regenrinne hat eine bestimmte Länge l (in Metern). Damit das Wasser gut abrinnt, muss die Regenrinne unter einem Winkel von mindestens α zur Horizontalen geneigt sein. Dadurch ergibt sich ein Höhenunterschied von mindestens h Metern zwischen den beiden Endpunkten der Regenrinne.
Aufgabenstellung:
Geben Sie eine Formel zur Berechnung von h in Abhängigkeit von l und α an!
h=
Banner Werbung für Region DE
Schon den nächsten Urlaub im Süden geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...

Aufgabe 1595
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkel im Einheitskreis
In der nachstehenden Grafik ist ein Winkel \(\alpha \) im Einheitskreis dargestellt.
Aufgabenstellung:
Zeichnen Sie in der Grafik denjenigen Winkel \(\beta \) aus dem Intervall [0°; 360°] mit \(\beta \ne \alpha \) ein, für den \(\cos \left( \beta \right) = \cos \left( \alpha \right)\) gilt!
Aufgabe 1596
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 7. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Stefan-Boltzmann-Gesetz
Die Leuchtkraft L eines Sterns wird durch folgende Formel beschrieben: \(L = 4 \cdot \pi \cdot {R^2} \cdot {T^4} \cdot \sigma \)Dabei ist R der Sternradius und T die Oberflächentemperatur des Sterns; σ ist eine Konstante (die sogenannte Stefan-Boltzmann-Konstante).
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Für verschiedene Sterne mit gleichem, bekanntem Sternradius R ist die Leuchtkraft L eine Funktion ____1_______ ; es handelt sich dabei um eine _______2_______ .
1 | |
des Sternradius R | A |
der Oberflächentemperatur T | B |
der Konstanten σ | C |
2 | |
lineare Funktion | I |
Potenzfunktion | II |
Exponentialfunktion | III |
Aufgabe 1597
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schnittpunkte
In der nachstehenden Abbildung sind der Graph der Funktion f mit \(f\left( x \right) = {x^2} - 4 \cdot x - 2\)und der Graph der Funktion g mit \(g\left( x \right) = x - 6\) dargestellt, sowie deren Schnittpunkte A und B gekennzeichnet.
Aufgabenstellung:
Bestimmen Sie die Koeffizienten a und b der quadratischen Gleichung \({x^2} + a \cdot x + b = 0\) so, dass die beiden Lösungen dieser Gleichung die x-Koordinaten der Schnittpunkte A und B sind!
Aufgabe 1598
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigung einer linearen Funktion
Der Graph einer linearen Funktion f verlauft durch die Punkte \(A = \left( {a\left| b \right.} \right)\) und \(B = \left( {5 \cdot a\left| { - 3 \cdot b} \right.} \right){\text{ mit }}a,b \in {\Bbb R}{{\backslash }}\left\{ 0 \right\}\)
Aufgabenstellung:
Bestimmen Sie die Steigung k der linearen Funktion f !
k=?
Banner Werbung für Region CH
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 1599
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Änderungsprozess
Durch die Gleichung \(N\left( t \right) = 1,2 \cdot {0,98^t}\) wird ein Änderungsprozess einer Größe N in Abhängigkeit von der Zeit t beschrieben.
- Aussage 1: Von einer radioaktiven Substanz zerfallen pro Zeiteinheit 0,02 % der am jeweiligen Tag vorhandenen Menge.
- Aussage 2: In ein Speicherbecken fliesen pro Zeiteinheit 0,02 m3 Wasser zu.
- Aussage 3: Vom Wirkstoff eines Medikaments werden pro Zeiteinheit 1,2 mg abgebaut.
- Aussage 4: Die Einwohnerzahl eines Landes nimmt pro Zeiteinheit um 1,2 % zu.
- Aussage 5: Der Wert einer Immobilie steigt pro Zeiteinheit um 2 %.
- Aussage 6: Pro Zeiteinheit nimmt die Temperatur eines Körpers um 2 % ab.
Aufgabenstellung:
Welcher der angeführten Änderungsprozesse kann durch die angegebene Gleichung beschrieben werden? Kreuzen Sie den zutreffenden Änderungsprozess an!
Aufgabe 1600
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeiten
Die nachstehenden Abbildungen zeigen die Graphen von Exponentialfunktionen, die jeweils die Abhängigkeit der Menge einer radioaktiven Substanz von der Zeit beschreiben. Dabei gibt M(t) die Menge (in mg) zum Zeitpunkt t (in Tagen) an.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
- Aussage 1: 1 Tag
- Aussage 2: 2 Tage
- Aussage 3: 3 Tage
- Aussage 4: 5 Tage
- Aussage 5: 10 Tage
- Aussage 6: mehr als 10 Tage
Aufgabenstellung:
Ordnen Sie den vier Graphen jeweils die entsprechende Halbwertszeit (aus A bis F) zu!
Aufgabe 1601
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer Sinusfunktion
Gegeben ist der Graph einer Funktion f mit \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right){\text{ mit }}a,b \in {{\Bbb R}^ + }\)
Aufgabenstellung:
Aufgabenstellung: Geben Sie die für den abgebildeten Graphen passenden Parameterwerte a und b an!
a=
b=