Headerbar Werbung für Region "nicht-DACH"
Österreichische AHS Matura - 2021.05.21 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1830
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rationale Zahlen
Nachstehend sind Aussagen über rationale Zahlen gegeben.
- Aussage 1: Für alle rationalen Zahlen a und b gilt: \(a + b \ge 0\)
- Aussage 2: Zu jeder rationalen Zahl a gibt es eine rationale Zahl b so, dass gilt: \(a + b = 0\)
- Aussage 3: Es gibt rationale Zahlen a und b mit \(a \cdot b < b\)
- Aussage 4: Wenn von den beiden rationalen Zahlen a und b, b ≠ 0, genau eine positiv ist, dann ist der Quotient \(\dfrac{a}{b}\) auf jeden Fall positiv.
- Aussage 5: Wenn von den beiden rationalen Zahlen a und b mindestens eine negativ ist, dann ist das Produkt \(a \cdot b\) auf jeden Fall negativ.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an. [2 aus 5]
[0 / 1 P.]
Banner Werbung für Region DE
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1831
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kleidungsstück
Am Ende des Jahres 2017 lag der Preis eines bestimmten Kleidungsstücks bei € 49,90. Damit war es um 17,8 % teurer als zu Beginn des Jahres 2017.
Aufgabenstellung:
Berechnen Sie, um welchen Geldbetrag das Kleidungsstück im Laufe des Jahres 2017 teurer geworden ist.
[0 / 1 P.]
Aufgabe 1832
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schulsportwoche
Für eine Schulsportwoche bucht eine Schule in einem Jugendgästehaus x Vierbettzimmer und y Sechsbettzimmer. Alle gebuchten Zimmer werden vollständig belegt. Die Buchung kann durch das nachstehende Gleichungssystem beschrieben werden.
\(\begin{array}{l} I:\,\,\,\,4 \cdot x + 6 \cdot y = 56\\ II:\,\,\,x + y = 12 \end{array}\)
- Aussage 1: Es werden genau 4 Vierbettzimmer und genau 6 Sechsbettzimmer gebucht.
- Aussage 2: Es werden weniger Vierbettzimmer als Sechsbettzimmer gebucht.
- Aussage 3: Es werden genau 12 Zimmer gebucht.
- Aussage 4: Es werden Betten für genau 56 Personen gebucht.
- Aussage 5: Es werden genau 10 Zimmer gebucht.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an. [2 aus 5]
Aufgabe 1833
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameterdarstellung von Geraden
Die nachstehende Abbildung zeigt die beiden Geraden g und h. Auf jeder der Geraden sind drei Punkte gekennzeichnet: A, B, P ∈ g bzw. B, C, Q ∈ h. Zusätzlich ist von jeder Geraden ein Richtungsvektor dargestellt.
- Aussage 1: \(A = C + s \cdot \overrightarrow v + t \cdot \overrightarrow w \)
- Aussage 2: \(B = C + s \cdot \overrightarrow v \)
- Aussage 3: \(B = Q + t \cdot \overrightarrow w \)
- Aussage 4: \(A = P + s \cdot \overrightarrow v + t \cdot \overrightarrow w \)
- Aussage 5: \(C = P + t \cdot \overrightarrow w \)
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, bei denen s, t ∈ ℝ mit s ≠ 0 und t ≠ 0 so gewählt werden können, dass die jeweilige Aussage wahr ist.
[2 aus 5]
[0 / 1 P.]
Aufgabe 1834
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadrat
Von einem Quadrat mit den Eckpunkten A, B, C und D sind der Eckpunkt C = (5 | –3) und der Schnittpunkt der Diagonalen M = (3 | 1) gegeben. Die Eckpunkte A, B, C und D des Quadrats sind dabei gegen den Uhrzeigersinn angeordnet.
Aufgabenstellung:
Ermitteln Sie die Koordinaten der Eckpunkte A und B.
- A=
- B=
[0 / ½ / 1 P.]
Banner Werbung für Region AT
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo und ohne Kreditkarte
Nach der Prüfung genießt du deinen Erfolg

Aufgabe 1835
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rampe
Eine Rampe mit einer (schrägen) Länge von d Metern überwindet einen Höhenunterschied von h Metern (d > 0, h > 0). Der Steigungswinkel der Rampe wird mit α bezeichnet.
Aufgabenstellung:
Kreuzen Sie die beiden Gleichungen an, die den gegebenen Sachverhalt richtig beschreiben.
- Aussage 1: \(d = \dfrac{h}{{\sin \left( \alpha \right)}}\)
- Aussage 2: \(d = h \cdot \cos \left( \alpha \right)\)
- Aussage 3: \(d = \dfrac{h}{{\cos \left( {90^\circ - \alpha } \right)}}\)
- Aussage 4: \(d = h \cdot \sin \left( {90^\circ - \alpha } \right)\)
- Aussage 5: \(d = h \cdot \tan \left( \alpha \right)\)
[2 aus 5]
[0 / 1 P.]
Aufgabe 1836
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ideales Gas
Die Gleichung \(p \cdot V = n \cdot R \cdot T\) beschreibt modellhaft den Zusammenhang zwischen dem Druck p, dem Volumen V, der Stoffmenge n und der absoluten Temperatur T eines idealen Gases, wobei R eine Konstante ist, mit \(V,n,R \in {{\Bbb R}^ + }{\text{ und }}p,T \in {\Bbb R}_0^ + \).
Die Funktion p modelliert in Abhängigkeit von der Temperatur T den Druck p(T), wenn die anderen in der Gleichung vorkommenden Größen konstant bleiben.
Aufgabenstellung:
Skizzieren Sie im nachstehenden Koordinatensystem den Graphen einer solchen Funktion p.
Aufgabe 1837
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionstypen
Gegeben sind vier Funktionstypen sowie sechs Wertetabellen der Funktionen f1 bis f6, die jeweils einem bestimmten Funktionstyp angehören. Die Funktionswerte von f1 sind auf zwei Dezimalstellen gerundet.
Aufgabenstellung:
Ordnen Sie jedem der vier angegebenen Funktionstypen jeweils die entsprechende Wertetabelle (aus A bis F) zu.
[0 / ½ / 1 P.]
- Funktionstyp 1: lineare Funktion
- Funktionstyp 2: quadratische Funktion
- Funktionstyp 3: Exponentialfunktion
- Funktionstyp 4: Sinusfunktion
Wertetabelle A bis F: links der Wert auf der x-Achse, daneben die jeweiligen Werte auf der y-Achse
x | fA(x) | fB(x) | fC(x) | fD(x) | fE(x) | fF(x) |
-2 | -0,91 | 8 | -7 | 0,25 | -3 | -0,5 |
-1 | -0,84 | 2 | -1 | 0,5 | -1 | -1 |
0 | 0 | 0 | 0 | 1 | 1 | n. def |
1 | 0,84 | 2 | 1 | 2 | 3 | 1 |
2 | 0,91 | 8 | 9 | 4 | 5 | 0,5 |
Aufgabe 1838
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Direkte Proportionalität
Der Funktionsgraph einer linearen Funktion
\(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = k \cdot x + d{\text{ mit }}k,d \in {\Bbb R}\)
verläuft durch die Punkte \(A = \left( {{x_A}\left| 6 \right.} \right){\text{ und }}B = \left( {12\left| {16} \right.} \right)\)
Aufgabenstellung:
Bestimmen Sie die Koordinate xA des Punktes A so, dass die Funktion f einen direkt proportionalen Zusammenhang beschreibt.
xA=
[0 / 1 P.]
Banner Werbung für Region AT
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo und ohne Kreditkarte
Nach der Prüfung genießt du deinen Erfolg

Aufgabe 1839
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Funktionen
In der nachstehenden Abbildung
sind die Graphen der beiden reellen Funktionen f und g dargestellt. Es gilt:
\(\eqalign{ & f\left( x \right) = a \cdot {x^2} + b{\text{ mit }}a,b \in {\Bbb R} \cr & g\left( x \right) = c \cdot {x^2} + d{\text{ mit c}}{\text{,d}} \in {\Bbb R} \cr} \)
Die Koordinaten der gekennzeichneten Punkte sind ganzzahlig.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an.
- Aussage 1: \(d = f\left( 0 \right)\)
- Aussage 2: \(b = d\)
- Aussage 3: \(a = - c\)
- Aussage 4: \( - f\left( x \right) = g\left( x \right){\text{ für alle }}x \in {\Bbb R}\)
- Aussage 5: \(f\left( 2 \right) = g\left( 2 \right)\)
[2 aus 5]
[0 / 1 P.]
Aufgabe 1840
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeiten von Zerfallsprozessen
Die drei Exponentialfunktionen N1, N2 und N3 beschreiben jeweils einen Zerfallsprozess mit den zugehörigen Halbwertszeiten \({\tau _1},{\tau _2}{\text{ und }}{\tau _3}\). Nachstehend sind Ausschnitte der Graphen dieser drei Funktionen abgebildet.
Aufgabenstellung:
Ordnen Sie die Halbwertszeiten \({\tau _1},{\tau _2}{\text{ und }}{\tau _3}\) der Größe nach. Beginnen Sie mit der kürzesten Halbwertszeit.
____<____ ____<
[0 / 1 P.]
Aufgabe 1841
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsterm
Von einer reellen Funktion \(f:{\Bbb R} \to {{\Bbb R}^ + }\) ist folgendes bekannt:
- \(f\left( 1 \right) = 3\)
- für alle reellen Zahlen x gilt: f(x + 1) ist um 50 % größer als f(x).
Aufgabenstellung:
Geben Sie einen Funktionsterm einer solchen Funktion f an.
f (x) =
[0 / 1 P.]