Österreichische BHS Matura - 2015.05.11 - 5 Teil A Beispiele
Aufgabe 4309
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Farbenfrohe Gummibären - Aufgabe A_157
Gummibären werden in 5 unterschiedlichen Farben bzw. 6 unterschiedlichen Geschmacksrichtungen hergestellt: rot (Himbeere und Erdbeere), gelb (Zitrone), grün (Apfel), orange (Orange) und weiß (Ananas).
Teil a
Die nach stehende Tabelle enthält eine Auflistung, wie viele weiße Gummibären in den untersuchten Packungen waren.
Anzahl weißer Gummibären pro Packung | 17 | 20 | 21 | 22 | 24 |
Anzahl der Packungen | 2 | 3 | 3 | 1 | 4 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie das arithmetische Mittel der Anzahlen weißer Gummibären pro Packung.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4310
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Farbenfrohe Gummibären - Aufgabe A_157
Gummibären werden in 5 unterschiedlichen Farben bzw. 6 unterschiedlichen Geschmacksrichtungen hergestellt: rot (Himbeere und Erdbeere), gelb (Zitrone), grün (Apfel), orange (Orange) und weiß (Ananas).
Teil b
Mehrere Packungen wurden hinsichtlich der Anzahl der gelben Gummibären pro Packung untersucht. Das Ergebnis dieser Untersuchung ist im nachstehenden Boxplot dargestellt.
Eine der untersuchten Packungen wird zufällig ausgewählt. Sie gehört zu jenem Viertel aller untersuchten Packungen, in dem die meisten gelben Gummibären zu finden waren.
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus dem Boxplot ab, in welchem Bereich die Anzahl der gelben Gummibären in der ausgewählten Packung liegen muss.
[1 Punkt]
Aufgabe 4311
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Farbenfrohe Gummibären - Aufgabe A_157
Gummibären werden in 5 unterschiedlichen Farben bzw. 6 unterschiedlichen Geschmacksrichtungen hergestellt: rot (Himbeere und Erdbeere), gelb (Zitrone), grün (Apfel), orange (Orange) und weiß (Ananas).
Teil c
In einer Packung sind alle Geschmacksrichtungen in gleichen Anteilen zu finden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viel Prozent der Gummibären in dieser Packung die Farbe Rot haben.
[1 Punkt]
Aufgabe 4312
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Farbenfrohe Gummibären - Aufgabe A_157
Gummibären werden in 5 unterschiedlichen Farben bzw. 6 unterschiedlichen Geschmacksrichtungen hergestellt: rot (Himbeere und Erdbeere), gelb (Zitrone), grün (Apfel), orange (Orange) und weiß (Ananas).
Teil d
Die Masse von Gummibären ist annähernd normalverteilt mit dem Erwartungswert μ = 2,3 g und der Standardabweichung σ = 0,1 g. Der Graph der Wahrscheinlichkeitsdichte ist in der unten stehenden Abbildung dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Beschriftungen in die dafür vorgesehenen Kästchen ein.
[1 Punkt]
Gummibären, die zu leicht oder zu schwer sind, werden aussortiert. Abweichungen von bis zu ± 0,25 g vom Erwartungswert werden toleriert.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, mit der ein zufällig ausgewählter Gummibär aussortiert wird.
[1 Punkt]
Aufgabe 4313
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganzkörperhyperthermie - Aufgabe A_158
Bei einem Therapieverfahren wird die Körpertemperatur bewusst stark erhöht (künstliches Fieber).
Teil a
Die nachfolgende Grafik dokumentiert näherungsweise den Verlauf des künstlichen Fiebers bei einer solchen Behandlung.
Die Funktion f beschreibt den Zusammenhang zwischen Zeit und Körpertemperatur:
\(f\left( t \right) = - 0,18 \cdot {t^3} + 0,85 \cdot {t^2} + 0,6 \cdot t + 36,6\)
- t ... Zeit in Stunden (h) mit 0 ≤ t ≤ 5
- f(t) ... Körpertemperatur zur Zeit t in °C
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie denjenigen Zeitpunkt, zu dem die Körpertemperatur 37 °C beträgt.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4314
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganzkörperhyperthermie - Aufgabe A_158
Bei einem Therapieverfahren wird die Körpertemperatur bewusst stark erhöht (künstliches Fieber).
Teil b
1. Teilaufgabe - Bearbeitungszeit 5:40
Dokumentieren Sie, wie die maximale Körpertemperatur im angegebenen Zeitintervall mithilfe der Differenzialrechnung berechnet werden kann.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie, warum der Graph einer Polynomfunktion 3. Grades höchstens 2 Extrempunkte haben kann.
[1 Punkt]
Aufgabe 4315
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganzkörperhyperthermie - Aufgabe A_158
Bei einem Therapieverfahren wird die Körpertemperatur bewusst stark erhöht (künstliches Fieber). Die Funktion f beschreibt den Zusammenhang zwischen Zeit und Körpertemperatur:
\(f\left( t \right) = - 0,18 \cdot {t^3} + 0,85 \cdot {t^2} + 0,6 \cdot t + 36,6\)
- t ... Zeit in Stunden (h) mit 0 ≤ t ≤ 5
- f(t) ... Körpertemperatur zur Zeit t in °C
Teil c
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie den Zeitpunkt der maximalen Temperaturzunahme.
[2 Punkte]
Aufgabe 4316
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganzkörperhyperthermie - Aufgabe A_158
Bei einem Therapieverfahren wird die Körpertemperatur bewusst stark erhöht (künstliches Fieber). Die Funktion f beschreibt den Zusammenhang zwischen Zeit und Körpertemperatur:
\(f\left( t \right) = - 0,18 \cdot {t^3} + 0,85 \cdot {t^2} + 0,6 \cdot t + 36,6\)
- t ... Zeit in Stunden (h) mit 0 ≤ t ≤ 5
- f(t) ... Körpertemperatur zur Zeit t in °C
Teil d
Die mittlere Körpertemperatur f während der 5 Stunden andauernden Behandlung soll ermittelt werden. Die mittlere Körpertemperatur in einem Zeitintervall [t1; t2] ist:
\(\overline f = \dfrac{1}{{{t_2} - {t_1}}} \cdot \int\limits_{{t_1}}^{{t_2}} {f\left( t \right)} \,\,dt\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die mittlere Körpertemperatur f im Intervall [0; 5].
[1 Punkt]
Aufgabe 4317
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit des Wissens - Aufgabe A_159
Das zu einem bestimmten Zeitpunkt erworbene Wissen verliert im Laufe der Zeit aufgrund gesellschaftlicher Veränderungen, technologischer Neuerungen etc. an Aktualität und Gültigkeit („Relevanz“). Die nachstehende Abbildung beschreibt die Abnahme der Relevanz des Wissens in verschiedenen Fachbereichen. Für jedes Jahr wird angegeben, wie viel Prozent des ursprünglichen Wissens noch relevant sind.
Teil a
Man geht davon aus, dass die Relevanz des beruflichen Fachwissens exponentiell abfällt und eine Halbwertszeit von 5 Jahren hat.
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie in die Abbildung der Angabe den Verlauf der Relevanz des beruflichen Fachwissens im Intervall [0; 15] ein.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4318
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit des Wissens - Aufgabe A_159
Das zu einem bestimmten Zeitpunkt erworbene Wissen verliert im Laufe der Zeit aufgrund gesellschaftlicher Veränderungen, technologischer Neuerungen etc. an Aktualität und Gültigkeit („Relevanz“). Die nachstehende Abbildung beschreibt die Abnahme der Relevanz des Wissens in verschiedenen Fachbereichen. Für jedes Jahr wird angegeben, wie viel Prozent des ursprünglichen Wissens noch relevant sind.
Teil b
Die Relevanz von Technologiewissen nimmt mit einer Halbwertszeit von 3 Jahren exponentiell ab.
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie diejenige Exponentialfunktion auf, die die Relevanz des Technologiewissens in Abhängigkeit von der Zeit beschreibt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, nach welcher Zeit die Relevanz des Technologiewissens auf 1 % der anfänglichen Relevanz abgesunken ist.
[1 Punkt]
Aufgabe 4319
tandardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit des Wissens - Aufgabe A_159
Das zu einem bestimmten Zeitpunkt erworbene Wissen verliert im Laufe der Zeit aufgrund gesellschaftlicher Veränderungen, technologischer Neuerungen etc. an Aktualität und Gültigkeit („Relevanz“).
Teil c
Die Relevanz des Hochschulwissens lässt sich durch folgende Funktion N beschreiben:
\(N\left( t \right) = 100 \cdot {e^{ - 0,0693 \cdot t}}\)
- t ... Zeit in Jahren
- N(t) ... Relevanz des Hochschulwissens zur Zeit t in % des anfänglichen Hochschulwissens
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, um wie viel Prozent die Relevanz des Hochschulwissens nach 7 Jahren bereits abgenommen hat.
[1 Punkt]
Aufgabe 4320
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit des Wissens - Aufgabe A_159
Das zu einem bestimmten Zeitpunkt erworbene Wissen verliert im Laufe der Zeit aufgrund gesellschaftlicher Veränderungen, technologischer Neuerungen etc. an Aktualität und Gültigkeit („Relevanz“). Die nachstehende Abbildung beschreibt die Abnahme der Relevanz des Wissens in verschiedenen Fachbereichen. Für jedes Jahr wird angegeben, wie viel Prozent des ursprünglichen Wissens noch relevant sind.
Teil d
Die Relevanz des Schulwissens kann in den ersten Jahrzehnten durch eine lineare Funktion beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der Abbildung in der Angabe die Steigung dieser linearen Funktion ab.
[1 Punkt]