Österreichische BHS Matura - 2020.05.28 - BRP & FAfEP & BASOP - 3 Teil B Beispiele
Aufgabe 4406
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weihnachtsmarkt - Aufgabe B_479
Teil a
Auf einem Weihnachtsmarkt werden Lebkuchensterne, Marmelade und Socken verkauft. Während des ersten Tages wurden 25 Personen bedient. Jede dieser Personen kaufte mindestens ein Produkt.
L | Menge der Personen, die Lebkuchensterne kauften |
M | Menge der Personen, die Marmelade kauften |
S | Menge der Personen, die Socken kauften |
- 6 Personen kauften sowohl Marmelade als auch Lebkuchensterne, aber keine Socken.
- 8 Personen kauften Socken.
1. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie das nachstehende Venn-Diagramm durch Eintragen der fehlenden Werte in die dafür vorgesehenen Kästchen.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Markieren Sie im nebenstehenden Venn-Diagramm die Menge (L ∩ S) \ M.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie die Menge (L ∩ S) \ M im gegebenen Sachzusammenhang.
[1 Punkt]
4 . Teilaufgabe - Bearbeitungszeit 5:40
Auch für die folgenden Tage wurden Venn-Diagramme erstellt. Ordnen Sie den beiden Venn-Diagrammen jeweils die passende Aussage aus A bis D zu.
[2 zu 4] [1 Punkt]
- 1. Venn-Diagramm
Bild
- 2. Venn-Diagramm
Bild
- Aussage A: Es gab mehr Personen, die genau 2 verschiedene Produkte kauften, als Personen, die nur Lebkuchensterne kauften.
- Aussage B: Es gab gleich viele Personen, die sowohl Socken als auch Lebkuchensterne kauften, wie Personen, die nur Marmelade kauften.
- Aussage C: Es gab mehr Personen, die alle 3 Produkte kauften, als Personen, die nur Marmelade kauften.
- Aussage D: Es gab weniger Personen, die sowohl Lebkuchensterne als auch Socken kauften, als Personen, die sowohl Marmelade als auch Socken kauften.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4407
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weihnachtsmarkt - Aufgabe B_479
Teil b
In der nachstehenden Abbildung ist eine Ausstechform für Lebkuchensterne dargestellt. Es handelt sich dabei um einen regelmäßigen 5-zackigen Stern.
Zur Berechnung der Länge einer Strecke x wird folgender Ausdruck aufgestellt:
\(x = \sqrt {{a^2} + {a^2} - 2 \cdot a \cdot a \cdot \cos \left( \alpha \right)} \)
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie in der obigen Abbildung die Strecke x ein.
[1 Punkt]
Für eine bestimmte Ausstechform gilt:
- a = 2 cm
- b = 5 cm
- α = 72°
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Flächeninhalt eines mit dieser Ausstechform ausgestochenen Lebkuchensterns.
[1 Punkt]
Aufgabe 4408
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weihnachtsmarkt - Aufgabe B_479
Teil c
Aus einem Teig werden mit einer Ausstechform Lebkuchenherzen ausgestochen. Der Flächeninhalt eines solchen Lebkuchenherzens beträgt A (in cm2), die Dicke beträgt d (in cm). N Lebkuchenherzen haben insgesamt ein Volumen V (in cm3).
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie aus A, V und d eine Formel zur Berechnung von N.
N =
[1 Punkt]
Aufgabe 4409
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weihnachtsmarkt - Aufgabe B_479
Teil d
Jemand beobachtete auf dem Weihnachtsmarkt das Kaufverhalten und bestimmte die folgenden Wahrscheinlichkeiten:
Anzahl n der Marmeladengläser | Wahrscheinlichkeit für den Kauf von n Marmeladengläser pro Person |
0 | 0,24 |
1 | 0,38 |
2 | 0,16 |
3 | 0,12 |
4 | |
\($ \geqslant 5\) | 0 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie die obige Tabelle durch Eintragen des fehlenden Wertes.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Erwartungswert für die Anzahl der gekauften Marmeladegläser pro Person.
[1 Punkt]
Aufgabe 4410
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Stand-up-Paddling - Aufgabe B_480
Stand-up-Paddling ist eine Wassersportart, bei der eine Person aufrecht auf einem Board steht und paddelt.
Teil a
In der nachstehenden Abbildung ist der Umriss des hinteren Teils eines Boards von oben betrachtet dargestellt. Die Begrenzungslinie kann näherungsweise durch eine Funktion f mit \(f\left( x \right) = a \cdot {x^4} + b \cdot {x^2} + c\) beschrieben werden.
x, f(x) |
Koordinaten in cm |
1. Teilaufgabe - Bearbeitungszeit 11:20
Erstellen Sie mithilfe der Informationen zu A und B ein Gleichungssystem zur Berechnung der Koeffizienten a, b und c.
[2 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Koeffizienten a, b und c.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4411
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Stand-up-Paddling - Aufgabe B_480
Stand-up-Paddling ist eine Wassersportart, bei der eine Person aufrecht auf einem Board steht und paddelt.
Teil b
Auf einer Luftpumpe für ein aufblasbares Board sind die folgenden zwei Einheiten für den Druck angegeben: pound-force per square inch (psi) und Bar (bar). Die nachstehende Skala zeigt den Zusammenhang zwischen den beiden Einheiten, wobei die Maßzahlen direkt proportional zueinander sind.
1. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie die obige Skala durch Eintragen des fehlenden Wertes.
[1 Punkt]
Aufgabe 4412
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Stand-up-Paddling - Aufgabe B_480
Stand-up-Paddling ist eine Wassersportart, bei der eine Person aufrecht auf einem Board steht und paddelt.
Teil c
Je nach Masse m der Person wird ein aufblasbares Board in einer der drei Größen S, M und L empfohlen.
empfohlene Länge des Boards in cm | Masse m der Person in kg | |
Größe S | 270 | \(m \leqslant 60\) |
Größe M | 300 | \(60 < m < 80\) |
Größe L | 320 | \(m \geqslant 80\) |
1. Teilaufgabe - Bearbeitungszeit 5:40
Veranschaulichen Sie im nachstehenden Koordinatensystem den Zusammenhang zwischen der Masse m der Person und der empfohlenen Lange des Boards.
[1 Punkt]
Boards in diesen drei Größen werden in einem Sportgeschäft verkauft. Die Preise und Verkaufszahlen in den Monaten Juli und August sind der nachstehenden Tabelle zu entnehmen.
Preis pro Board in € | Verkaufszahlen im Juli | Verkaufszahlen im August | |
Größe S | a | 8 | 10 |
Größe M | b | 20 | 13 |
Größe L | c | 14 | 25 |
2. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Ausdrucken jeweils die zutreffende Interpretation aus A bis D zu.
[2 zu 4] [1 Punkt]
- Ausdruck 1: \(a \cdot 18 + b \cdot 33 + c \cdot 39\)
- Ausdruck 2: \(\dfrac{{a \cdot 10 + b \cdot 13 + c \cdot 25}}{{48}}\)
- Interpretation A: Der Ausdruck entspricht dem Anteil der Boards, die im August verkauft wurden, an der Gesamtzahl der verkauften Boards in den beiden Monaten.
- Interpretation B: Der Ausdruck entspricht den Gesamteinnahmen aus dem Verkauf dieser Boards in den beiden Monaten.
- Interpretation C: Der Ausdruck entspricht den durchschnittlichen Einnahmen pro Board im August.
- Interpretation D: Der Ausdruck entspricht den Gesamteinnahmen aus dem Verkauf dieser Boards im August.
Aufgabe 4413
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Stand-up-Paddling - Aufgabe B_480
Stand-up-Paddling ist eine Wassersportart, bei der eine Person aufrecht auf einem Board steht und paddelt.
Teil d
In einem Hafen wurde eine Stand-up-Paddling-Trainingsstrecke mit Bojen markiert. Dabei muss man vom Start im Punkt A zum Punkt B und dann zum Punkt C paddeln (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie das Ergebnis der nachstehenden Berechnung geometrisch.
[1 Punkt]
\(\overrightarrow {AB} \cdot \overrightarrow {BC} = 0\)
Aufgabe 4414
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sozialausgaben - Aufgabe B_481
Sozialausgaben sind Geldleistungen, die der Staat Personen in bestimmten Lebenslagen zur Verfügung stellt.
Teil a
Die Sozialausgaben in Österreich für ausgewählte Jahre im Zeitraum von 1990 bis 2015 sind in der nachstehenden Tabelle angegeben (Werte gerundet).
Jahr | Sozialausgaben in Milliarden € |
1990 | 35,5 |
1995 | 51,0 |
2000 | 59,8 |
2005 | 71,2 |
2010 | 87,8 |
2015 | 102,5 |
Datenquelle: Statistik Austria (Hrsg.): Statistisches Jahrbuch Österreichs 2017. Wien: Verlag Österreich 2016, S. 224.
Die Sozialausgaben sollen in Abhängigkeit von der Zeit t in Jahren ab 1990 näherungsweise durch eine lineare Funktion beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie eine Gleichung der zugehörigen linearen Regressionsfunktion S1. Wählen Sie t = 0 für das Jahr 1990.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie den Wert der Steigung von S1 im gegebenen Sachzusammenhang.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe von S1 eine Prognose für die Sozialausgaben im Jahr 2020.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4415
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sozialausgaben - Aufgabe B_481 & B_482
Sozialausgaben sind Geldleistungen, die der Staat Personen in bestimmten Lebenslagen zur Verfügung stellt.
Teil b
Die Sozialausgaben in Österreich für ausgewählte Jahre im Zeitraum von 1990 bis 2015 sind in der nachstehenden Tabelle angegeben (Werte gerundet).
Jahr | Sozialausgaben in Milliarden € |
1990 | 35,5 |
1995 | 51,0 |
2000 | 59,8 |
2005 | 71,2 |
2010 | 87,8 |
2015 | 102,5 |
Datenquelle: Statistik Austria (Hrsg.): Statistisches Jahrbuch Österreichs 2017. Wien: Verlag Österreich 2016, S. 224.
1. Teilaufgabe - Bearbeitungszeit 5:40
(nur HAK)
Interpretieren Sie das Ergebnis der nachstehenden Berechnung im gegebenen Sachzusammenhang:
\(\root 5 \of {\dfrac{{87,8}}{{71,2}}} - 1 \approx 0,043\)
Eine Sozialwissenschaftlerin geht von der Annahme aus, dass die Sozialausgaben in Österreich seit dem Jahr 2015 jährlich um 2,5 % bezogen auf das jeweilige Vorjahr steigen. Dieses Modell soll durch eine Funktion S2 beschrieben werden.
t | Zeit ab 2015 in Jahren |
S2(t) | Sozialausgaben zur Zeit t in Milliarden Euro |
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der Funktion S2.
Wählen Sie t = 0 für das Jahr 2015.
[1 Punkt]
Aufgabe 4416
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sozialausgaben - Aufgabe B_481
Sozialausgaben sind Geldleistungen, die der Staat Personen in bestimmten Lebenslagen zur Verfügung stellt.
Teil c
In der nachstehenden Abbildung sind das Bruttoinlandsprodukt und die Sozialausgaben Österreichs für den Zeitraum von 1990 bis 2015 dargestellt. Weiters ist die Regressionsgerade für das Bruttoinlandsprodukt für diesen Zeitraum eingezeichnet.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Wert der Steigung der Regressionsgeraden für das Bruttoinlandsprodukt.
[1 Punkt]
Die Sozialquote ist das Verhältnis der Sozialausgaben zum Bruttoinlandsprodukt.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Sozialquote für das Jahr 2015.
[1 Punkt]
Aufgabe 4417
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sozialausgaben - Aufgabe B_481
Sozialausgaben sind Geldleistungen, die der Staat Personen in bestimmten Lebenslagen zur Verfügung stellt.
Teil d
Die Verteilung der Sozialausgaben von insgesamt 102,5 Milliarden Euro für das Jahr 2015 ist in der nachstehenden Abbildung dargestellt. Der Bereich „Familie / Kinder“ ist markiert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Betrag, der im Jahr 2015 für den Bereich „Familie / Kinder“ ausgegeben worden ist.
[1 Punkt]