Headerbar Werbung für Region "nicht-DACH"
Österreichische BHS Matura - 2020.05.28 - HTL2 - 3 Teil B Beispiele
Aufgabe 4390
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blumentopf - Aufgabe B_474
Teil a
Ein Unternehmen produziert Blumentöpfe. Der Außendurchmesser eines solchen Blumentopfs beträgt 40 cm. Auch die Gesamthöhe des Blumentopfs beträgt 40 cm. (Siehe nachstehende Abbildung der Begrenzungslinie. )
Für die Funktion f mit f(x) = y gilt:
\(y = \dfrac{{37}}{{{{19}^6}}} \cdot {x^6} + 3{\text{ mit }} - 19 \leqslant x \leqslant 19\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie, warum f eine gerade Funktion ist.
[1 Punkt]
Die Innenwand des Blumentopfs entsteht durch Rotation des oben dargestellten Graphen von f um die y-Achse.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie das Innenvolumen des Blumentopfs.
[2 Punkte]
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 4391
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blumentopf - Aufgabe B_474
Teil b
Ein Unternehmen produziert Stangen für Kletterpflanzen. Die Länge dieser Stangen ist annähernd normalverteilt mit dem Erwartungswert μ = 150 cm. Die nachstehende Abbildung zeigt den Graphen der zugehörigen Verteilungsfunktion F.
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung den Wert der Standardabweichung ab.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Veranschaulichen Sie in der obigen Abbildung die Wahrscheinlichkeit, die durch den nachstehenden Ausdruck berechnet wird.
1 – F(149,5)
[1 Punkt]
Ein anderes Unternehmen produziert auch solche Stangen. Die Länge dieser Stangen ist ebenfalls annähernd normalverteilt mit dem Erwartungswert μ = 150 cm. Es ist bekannt, dass 92,3 % dieser Stangen eine Länge von höchstens 151 cm haben.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die zugehörige Standardabweichung.
[1 Punkt]
Aufgabe 4392
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blumentopf - Aufgabe B_474
Teil c
Der Erlös aus dem Verkauf von Blumentöpfen kann durch die Funktion E beschrieben werden:
\(E\left( x \right) = 20 \cdot x - 0,12 \cdot {x^2}\)
x |
Verkaufsmenge in ME |
E(x) |
Erlös bei der Verkaufsmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie das größtmögliche Intervall für x, in dem der Erlös mindestens 100 GE betragt.
[1 Punkt]
Aufgabe 4399
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bitterfelder Bogen - Aufgabe B_477
Der Bitterfelder Bogen ist eine Stahlkonstruktion, die aus mehreren Bögen besteht. Ein aus Rampen bestehender Fußweg führt innerhalb der Bögen zu einer Aussichtsplattform.
Teil a
In der nachstehenden Skizze wird der äußere Rand der Stahlkonstruktion näherungsweise durch einen Kreisbogen mit dem Mittelpunkt M und dem Radius r dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie aus a und h eine Formel zur Berechnung des Radius r.
r =
[1 Punkt]
Aufgabe 4400
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bitterfelder Bogen - Aufgabe B_477
Der Bitterfelder Bogen ist eine Stahlkonstruktion, die aus mehreren Bögen besteht. Ein aus Rampen bestehender Fußweg führt innerhalb der Bögen zu einer Aussichtsplattform.
Teil b
Der Verlauf des Bogens kann näherungsweise durch die Graphen der Funktionen f und g dargestellt werden. Die Graphen der beiden Funktionen sind zueinander symmetrisch bezüglich der senkrechten Achse. (Siehe nachstehende Abbildung.)
Es gilt:
\(f\left( x \right) = 30 \cdot \left( {1 - {e^{\dfrac{{x - 35}}{{13}}}}} \right){\text{ mit }}0 \leqslant x \leqslant 35\)
In einer Höhe von 21 m befindet sich die Aussichtsplattform.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Lange PQ.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Schnittwinkel α der Graphen der Funktionen f und g.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie das Ergebnis des nachstehenden Ausdrucks im gegebenen Sachzusammenhang.
\(2 \cdot \int\limits_0^{35} {\sqrt {1 + {{\left( { - \dfrac{{30}}{{13}} \cdot {e^{\dfrac{{x - 35}}{{13}}}}} \right)}^2}} } \,\,dx = 94,57\)
[1 Punkt]
Banner Werbung für Region DE
Schon den nächsten Urlaub im Süden geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...

Aufgabe 4401
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bitterfelder Bogen - Aufgabe B_477
Der Bitterfelder Bogen ist eine Stahlkonstruktion, die aus mehreren Bögen besteht. Ein aus Rampen bestehender Fußweg führt innerhalb der Bögen zu einer Aussichtsplattform.
Teil c
Der Fußweg zur Aussichtsplattform besteht aus einzelnen Rampen (siehe strichlierte Geradenstücke in der nachstehenden modellhaften Abbildung).
Es gilt:
\(A = \left( { - 45|0} \right),\,\,\,\,\,\overrightarrow {AB} = \left( {\begin{array}{*{20}{c}} {78} \\ {4,2} \end{array}} \right)\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Koordinaten des Punktes B.
[1 Punkt]
Die Neigungswinkel der Rampen sind jeweils gleich groß. Es soll eine Parameterdarstellung der Geraden g durch die Punkte B und C erstellt werden.
2. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein.
\(g:X = \left( {\begin{array}{*{20}{c}} ? \\ ? \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} ? \\ ? \end{array}} \right)\)
[1 Punkt]
Aufgabe 4402
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bitterfelder Bogen - Aufgabe B_477
Der Bitterfelder Bogen ist eine Stahlkonstruktion, die aus mehreren Bögen besteht. Ein aus Rampen bestehender Fußweg führt innerhalb der Bögen zu einer Aussichtsplattform.
Teil d
Ein Läufer verwendet den Fußweg zur Aussichtsplattform als Trainingsstrecke. Mithilfe eines Brustgurts misst er seine Herzfrequenz. Diese wird an seine Pulsuhr mit einer Sendefrequenz von 5 Kilohertz (kHz) übermittelt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie in der nachstehenden logarithmischen Skala die Sendefrequenz des Brustgurts ein.
[1 Punkt]
Der Läufer hat wiederholt seinen Maximalpuls (in Herzschlägen pro Minute) gemessen:
182 | 192 | 183 | 185 | 189 | 185 | 179 | 189 | 192 |
Der Maximalpuls des Läufers kann als annähernd normalverteilt angenommen werden.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den zweiseitigen 95-%-Vertrauensbereich für den Erwartungswert des Maximalpulses.
[1 Punkt]
Aufgabe 4403
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil a
Die nachstehende Abbildung zeigt modellhaft die Wassertemperatur eines Sees in Abhängigkeit von der Tiefe x im Frühling (TF) und im Winter (TW). Die Wassertemperatur nähert sich in beiden Fällen asymptotisch dem Wert 4 °C.
Die Wassertemperatur des Sees im Frühling kann in Abhängigkeit von der Tiefe x näherungsweise durch eine Exponentialfunktion
\({T_F}{\text{ mit }}{T_F}\left( x \right) = a + b \cdot {e^{c \cdot x}}\)
beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 11:20
Ermitteln Sie mithilfe der obigen Abbildung die Parameter a, b und c der Funktion TF.
[2 Punkte]
Für ein bestimmtes x1 gilt:
\({T_F}\left( {{x_1}} \right) - {T_W}\left( {{x_1}} \right) = 5\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie x1 mithilfe der obigen Abbildung.
[1 Punkt]
Aufgabe 4404
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil b
In der Limnologie wird für bestimmte Zwecke eine Funktion g verwendet:
\(g\left( x \right) = a \cdot {\left( {1 - \dfrac{x}{b}} \right)^{ - 1}}\)
a,b | positive Parameter |
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie diejenige Aussage an, die auf die Funktion g nicht zutrifft.
[1 aus 5] [1 Punkt]
- Aussage 1: g(0) = a
- Aussage 2: Für 0 < x < b gilt: g(x) > a
- Aussage 3: g ist für 0 < x < b monoton steigend.
- Aussage 4: Die Funktion g hat eine Polstelle.
- Aussage 5: g(b) = 0
Banner Werbung für Region DE
Schon den nächsten Urlaub im Süden geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...

Aufgabe 4405
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil c
Die Dichte von Wasser in Abhängigkeit von der Temperatur kann unter bestimmten Bedingungen näherungsweise durch die Funktion ϱ beschrieben werden:
\(\rho \left( T \right) = a - b \cdot {\left( {T - 4} \right)^2}{\text{ mit }}0 < \rho \leqslant 10\)
T |
Temperatur in °C |
\(\rho \left( T \right)\) | |
a,b |
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Funktionsgleichung die Koordinaten des Scheitelpunkts S von ϱ ab.
S = ( | )
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie mathematisch, dass der Scheitelpunkt ein Hochpunkt der Funktion ϱ ist.
[1 Punkt]
Es gilt: a = 999,972 und b = 0,007
Die Gleichung einer Tangente an den Graphen der Funktion ϱ lautet:
\(f\left( T \right) = 0,028 \cdot T + d\)
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Parameter d.
[1 Punkt]
Jemand verwendet zur Berechnung der Dichte von Wasser bei 10 °C die obige Funktion ϱ mit den Parametern a = 999,972 und b = 0,007. Die Dichte von Wasser bei 10 °C beträgt jedoch laut einer Tabelle 999,700 kg/m3.
4. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des absoluten Fehlers bei Verwendung der Funktion ϱ anstelle des Tabellenwerts.
[1 Punkt]