Österreichische BHS Matura - 2020.05.28 - HTL2 - 3 Teil B Beispiele
Aufgabe 4390
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blumentopf - Aufgabe B_474
Teil a
Ein Unternehmen produziert Blumentöpfe. Der Außendurchmesser eines solchen Blumentopfs beträgt 40 cm. Auch die Gesamthöhe des Blumentopfs beträgt 40 cm. (Siehe nachstehende Abbildung der Begrenzungslinie. )
Für die Funktion f mit f(x) = y gilt:
\(y = \dfrac{{37}}{{{{19}^6}}} \cdot {x^6} + 3{\text{ mit }} - 19 \leqslant x \leqslant 19\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie, warum f eine gerade Funktion ist.
[1 Punkt]
Die Innenwand des Blumentopfs entsteht durch Rotation des oben dargestellten Graphen von f um die y-Achse.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie das Innenvolumen des Blumentopfs.
[2 Punkte]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4391
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blumentopf - Aufgabe B_474
Teil b
Ein Unternehmen produziert Stangen für Kletterpflanzen. Die Länge dieser Stangen ist annähernd normalverteilt mit dem Erwartungswert μ = 150 cm. Die nachstehende Abbildung zeigt den Graphen der zugehörigen Verteilungsfunktion F.
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung den Wert der Standardabweichung ab.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Veranschaulichen Sie in der obigen Abbildung die Wahrscheinlichkeit, die durch den nachstehenden Ausdruck berechnet wird.
1 – F(149,5)
[1 Punkt]
Ein anderes Unternehmen produziert auch solche Stangen. Die Länge dieser Stangen ist ebenfalls annähernd normalverteilt mit dem Erwartungswert μ = 150 cm. Es ist bekannt, dass 92,3 % dieser Stangen eine Länge von höchstens 151 cm haben.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die zugehörige Standardabweichung.
[1 Punkt]
Aufgabe 4392
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blumentopf - Aufgabe B_474
Teil c
Der Erlös aus dem Verkauf von Blumentöpfen kann durch die Funktion E beschrieben werden:
\(E\left( x \right) = 20 \cdot x - 0,12 \cdot {x^2}\)
x |
Verkaufsmenge in ME |
E(x) |
Erlös bei der Verkaufsmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie das größtmögliche Intervall für x, in dem der Erlös mindestens 100 GE betragt.
[1 Punkt]
Aufgabe 4399
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bitterfelder Bogen - Aufgabe B_477
Der Bitterfelder Bogen ist eine Stahlkonstruktion, die aus mehreren Bögen besteht. Ein aus Rampen bestehender Fußweg führt innerhalb der Bögen zu einer Aussichtsplattform.
Teil a
In der nachstehenden Skizze wird der äußere Rand der Stahlkonstruktion näherungsweise durch einen Kreisbogen mit dem Mittelpunkt M und dem Radius r dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie aus a und h eine Formel zur Berechnung des Radius r.
r =
[1 Punkt]
Aufgabe 4400
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bitterfelder Bogen - Aufgabe B_477
Der Bitterfelder Bogen ist eine Stahlkonstruktion, die aus mehreren Bögen besteht. Ein aus Rampen bestehender Fußweg führt innerhalb der Bögen zu einer Aussichtsplattform.
Teil b
Der Verlauf des Bogens kann näherungsweise durch die Graphen der Funktionen f und g dargestellt werden. Die Graphen der beiden Funktionen sind zueinander symmetrisch bezüglich der senkrechten Achse. (Siehe nachstehende Abbildung.)
Es gilt:
\(f\left( x \right) = 30 \cdot \left( {1 - {e^{\dfrac{{x - 35}}{{13}}}}} \right){\text{ mit }}0 \leqslant x \leqslant 35\)
In einer Höhe von 21 m befindet sich die Aussichtsplattform.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Lange PQ.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Schnittwinkel α der Graphen der Funktionen f und g.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie das Ergebnis des nachstehenden Ausdrucks im gegebenen Sachzusammenhang.
\(2 \cdot \int\limits_0^{35} {\sqrt {1 + {{\left( { - \dfrac{{30}}{{13}} \cdot {e^{\dfrac{{x - 35}}{{13}}}}} \right)}^2}} } \,\,dx = 94,57\)
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4401
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bitterfelder Bogen - Aufgabe B_477
Der Bitterfelder Bogen ist eine Stahlkonstruktion, die aus mehreren Bögen besteht. Ein aus Rampen bestehender Fußweg führt innerhalb der Bögen zu einer Aussichtsplattform.
Teil c
Der Fußweg zur Aussichtsplattform besteht aus einzelnen Rampen (siehe strichlierte Geradenstücke in der nachstehenden modellhaften Abbildung).
Es gilt:
\(A = \left( { - 45|0} \right),\,\,\,\,\,\overrightarrow {AB} = \left( {\begin{array}{*{20}{c}} {78} \\ {4,2} \end{array}} \right)\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Koordinaten des Punktes B.
[1 Punkt]
Die Neigungswinkel der Rampen sind jeweils gleich groß. Es soll eine Parameterdarstellung der Geraden g durch die Punkte B und C erstellt werden.
2. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein.
\(g:X = \left( {\begin{array}{*{20}{c}} ? \\ ? \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} ? \\ ? \end{array}} \right)\)
[1 Punkt]
Aufgabe 4402
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bitterfelder Bogen - Aufgabe B_477
Der Bitterfelder Bogen ist eine Stahlkonstruktion, die aus mehreren Bögen besteht. Ein aus Rampen bestehender Fußweg führt innerhalb der Bögen zu einer Aussichtsplattform.
Teil d
Ein Läufer verwendet den Fußweg zur Aussichtsplattform als Trainingsstrecke. Mithilfe eines Brustgurts misst er seine Herzfrequenz. Diese wird an seine Pulsuhr mit einer Sendefrequenz von 5 Kilohertz (kHz) übermittelt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie in der nachstehenden logarithmischen Skala die Sendefrequenz des Brustgurts ein.
[1 Punkt]
Der Läufer hat wiederholt seinen Maximalpuls (in Herzschlägen pro Minute) gemessen:
182 | 192 | 183 | 185 | 189 | 185 | 179 | 189 | 192 |
Der Maximalpuls des Läufers kann als annähernd normalverteilt angenommen werden.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den zweiseitigen 95-%-Vertrauensbereich für den Erwartungswert des Maximalpulses.
[1 Punkt]
Aufgabe 4403
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil a
Die nachstehende Abbildung zeigt modellhaft die Wassertemperatur eines Sees in Abhängigkeit von der Tiefe x im Frühling (TF) und im Winter (TW). Die Wassertemperatur nähert sich in beiden Fällen asymptotisch dem Wert 4 °C.
Die Wassertemperatur des Sees im Frühling kann in Abhängigkeit von der Tiefe x näherungsweise durch eine Exponentialfunktion
\({T_F}{\text{ mit }}{T_F}\left( x \right) = a + b \cdot {e^{c \cdot x}}\)
beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 11:20
Ermitteln Sie mithilfe der obigen Abbildung die Parameter a, b und c der Funktion TF.
[2 Punkte]
Für ein bestimmtes x1 gilt:
\({T_F}\left( {{x_1}} \right) - {T_W}\left( {{x_1}} \right) = 5\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie x1 mithilfe der obigen Abbildung.
[1 Punkt]
Aufgabe 4404
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil b
In der Limnologie wird für bestimmte Zwecke eine Funktion g verwendet:
\(g\left( x \right) = a \cdot {\left( {1 - \dfrac{x}{b}} \right)^{ - 1}}\)
a,b | positive Parameter |
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie diejenige Aussage an, die auf die Funktion g nicht zutrifft.
[1 aus 5] [1 Punkt]
- Aussage 1: g(0) = a
- Aussage 2: Für 0 < x < b gilt: g(x) > a
- Aussage 3: g ist für 0 < x < b monoton steigend.
- Aussage 4: Die Funktion g hat eine Polstelle.
- Aussage 5: g(b) = 0
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4405
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil c
Die Dichte von Wasser in Abhängigkeit von der Temperatur kann unter bestimmten Bedingungen näherungsweise durch die Funktion ϱ beschrieben werden:
\(\rho \left( T \right) = a - b \cdot {\left( {T - 4} \right)^2}{\text{ mit }}0 < \rho \leqslant 10\)
T |
Temperatur in °C |
\(\rho \left( T \right)\) | |
a,b |
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Funktionsgleichung die Koordinaten des Scheitelpunkts S von ϱ ab.
S = ( | )
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie mathematisch, dass der Scheitelpunkt ein Hochpunkt der Funktion ϱ ist.
[1 Punkt]
Es gilt: a = 999,972 und b = 0,007
Die Gleichung einer Tangente an den Graphen der Funktion ϱ lautet:
\(f\left( T \right) = 0,028 \cdot T + d\)
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Parameter d.
[1 Punkt]
Jemand verwendet zur Berechnung der Dichte von Wasser bei 10 °C die obige Funktion ϱ mit den Parametern a = 999,972 und b = 0,007. Die Dichte von Wasser bei 10 °C beträgt jedoch laut einer Tabelle 999,700 kg/m3.
4. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des absoluten Fehlers bei Verwendung der Funktion ϱ anstelle des Tabellenwerts.
[1 Punkt]