Österreichische BHS Matura - 2021.09.17 - BRP & FAfEP & BASOP - 3 Teil B Beispiele
Aufgabe 4484
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grundstücke - Aufgabe B_518
Teil a
In der nebenstehenden Abbildung ist ein dreieckiges Grundstück dargestellt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Begründen Sie mithilfe der gegebenen Seitenlängen, warum der Winkel α der größte Winkel des Dreiecks ist.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeigen Sie mithilfe des Satzes von Pythagoras, dass α kein rechter Winkel ist.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Winkel α.
[0 / 1 P.]
4. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Flächeninhalt dieses Grundstücks.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4485
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grundstücke - Aufgabe B_518
Teil b
Ein anderes dreieckiges Grundstück wird erweitert. Die neue Grenze soll nun nicht mehr direkt vom Koordinatenursprung zum Punkt C verlaufen, sondern über die beiden markierten Punkte P1 und P2 (siehe nachstehende Abbildung).
Der Verlauf dieser neuen Grenze soll durch den Graphen einer Polynomfunktion f mit
\(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten von f.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Koeffizienten von f.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, um wie viele Quadratmeter der Flächeninhalt des Grundstücks durch die Erweiterung zunimmt.
[0 / 1 P.]
Aufgabe 4486
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kino - Aufgabe B_519
Teil a
Personen, die ein Kino besuchen, können Geld für 3 verschiedene Bereiche ausgeben:
- K … Menge der Personen, die für das Kinoticket Geld ausgeben
- P … Menge der Personen, die für das Parkticket Geld ausgeben
- V … Menge der Personen, die für die Verpflegung Geld ausgeben
1. Teilaufgabe - Bearbeitungszeit 05:40
Ordnen Sie den beiden Mengen jeweils die zutreffende Beschreibung aus A bis D zu.
[0 / 1 P.]
- Menge 1:
- Menge 2:
- Beschreibung A: Menge der Personen, die nur für das Kinoticket Geld ausgeben
- Beschreibung B: Menge der Personen, die für das Kinoticket Geld ausgeben
- Beschreibung C: Menge der Personen, die sowohl für das Kinoticket als auch für das Parkticket Geld ausgeben
- Beschreibung D: Menge der Personen, die entweder für das Kinoticket oder für das Parkticket oder für beides Geld ausgeben
Die Ergebnisse einer Befragung sind im nachstehenden Venn-Diagramm dargestellt.
2. Teilaufgabe - Bearbeitungszeit 05:40
Beschreiben Sie die Bedeutung der Zahl 12 im obigen Venn-Diagramm im gegebenen Sachzusammenhang.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, wie viel Prozent der befragten Personen in der Menge K ∩ P ∩ V enthalten sind.
[0 / 1 P.]
Aufgabe 4487
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kino - Aufgabe B_519
Teil b
Die nachstehende Tabelle gibt die jährlichen Nettoeinnahmen aller Kinos in Österreich für einige Jahre an.
Jahr |
2005 |
2006 |
2011 |
2012 |
2015 |
jährliche Nettoeinnahmen in Millionen Euro |
94,8 |
104,3 |
115,7 |
118,5 |
127,2 |
Jahr | 2005 | 2006 | 2011 | 2012 | 2015 |
jährliche Nettoeinnahmen in Millionen Euro | 94,8 | 104,3 | 115,7 | 118,5 | 127,2 |
Datenquelle: https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/k… [04.08.2021].
Die jährlichen Nettoeinnahmen in Millionen Euro sollen in Abhängigkeit von der Zeit t durch die lineare Funktion f beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion f auf.
Wählen Sie t = 0 für das Jahr 2005.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie den Wert der Steigung von f im gegebenen Sachzusammenhang.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen von f ein.
[0 / 1 P.]
Aufgabe 4488
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kino - Aufgabe B_519
Teil c
Ein Kino zeigt einen bestimmten Film gleichzeitig in 3 Kinosälen.
- Im Kinosaal X wird der Film in der Standardversion gezeigt. Hier kostet ein Ticket € 14,80.
- Im Kinosaal Y wird der Film in 3D gezeigt. Hier kostet ein Ticket € 17.
- Im Kinosaal Z wird der Film im „Director’s Cut“ gezeigt. Hier kostet ein Ticket € 19,30.
- Insgesamt wurden 120 Tickets verkauft und € 2.067 eingenommen.
- Für Kinosaal Z wurden 25 % mehr Tickets als für Kinosaal X verkauft.
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie ein Gleichungssystem zur Berechnung der Anzahl der jeweils verkauften Tickets für die Kinosäle X, Y und Z.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Anzahl der jeweils verkauften Tickets für die Kinosäle X, Y und Z.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4489
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kartenhaus - Aufgabe B_520
Aus Spielkarten kann man ein Kartenhaus bauen. In der nachstehenden Abbildung sind Kartenhäuser, die aus einer unterschiedlichen Anzahl von Stockwerken bestehen, in der Ansicht von vorne skizziert.
Teil a
Die nachstehende Tabelle gibt an, wie viele Karten für ein n-stöckiges Kartenhaus insgesamt benötigt werden und wie viele davon für das unterste Stockwerk benötigt werden.
Anzahl der Stockwerke | insgesamt benötigte Karten | Karten für das unterste Stockwerk |
1 | 2 | 2 |
2 | 7 | 5 |
3 | 15 | 8 |
4 | 26 | 11 |
5 |
1. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie in der obigen Tabelle die beiden fehlenden Zahlen in die grau markierten Zellen ein.
[0 / 1 P.]
Die Anzahl der Karten für das unterste Stockwerk kann durch die arithmetische Folge zn beschrieben werden.
2. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie ein explizites Bildungsgesetz für die arithmetische Folge zn.
[0 / 1 P.]
Maria hat ein 24-stöckiges Kartenhaus errichtet und möchte es nun zu einem 25-stöckigen Kartenhaus erweitern.
3. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die Anzahl der zusätzlichen Karten, die Maria dafür benötigt.
[0 / 1 P.]
Aufgabe 4490
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kartenhaus - Aufgabe B_520
Aus Spielkarten kann man ein Kartenhaus bauen.
Teil b
Die Gesamtanzahl sn der Karten für ein n-stöckiges Kartenhaus kann mit der nachstehenden Formel ermittelt werden.
\({s_n} = 3 \cdot \dfrac{{n \cdot \left( {n + 1} \right)}}{2} - n\)
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Gesamtanzahl der Karten, die für ein 50-stöckiges Kartenhaus benötigt werden. [0 / 1 P.]
Alexander hat 3 vollständige Kartensets zu je 32 Karten zur Verfügung und möchte ein Kartenhaus mit möglichst vielen Stockwerken bauen.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Anzahl der Stockwerke, die Alexanders Kartenhaus höchstens haben kann.
[0 / 1 P.]
Aufgabe 4491
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kartenhaus - Aufgabe B_520
Aus Spielkarten kann man ein Kartenhaus bauen.
Teil c
Bei einem Glücksspiel wird ein Kartenspiel mit 32 Karten verwendet, das genau 4 Asse enthält. Bryan zieht zufällig und ohne hinzusehen 1 Karte. Ist die gezogene Karte ein Ass, so gewinnt er € 20. Ist die gezogene Karte kein Ass, so verliert er € 5. Die Zufallsvariable X gibt den Gewinn bei diesem Spiel in € an.
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie eine Wertetabelle für die Wahrscheinlichkeitsverteilung von X.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Erwartungswert von X.
[0 / 1 P.]