Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Einheit der Geschwindigkeit ist Meter pro Sekunde

Einheit der Geschwindigkeit ist Meter pro Sekunde

Meter pro Sekunde ist die Einheit der Geschwindigkeit. Ein Körper welcher sich mit konstanter Geschwindigkeit von 1 m/s bewegt, legt in einer Sekunde die Entfernung von einem Meter zurück.

Hier findest du folgende Inhalte

2
Formeln
1
Aufgaben
    Formeln
    Wissenspfad
    Aufgaben

    Zeit t

    Die Zeit ist eine die physikalische Basisgröße mit der Einheit Sekunde. Man unterscheidet zwischen Vergangenheit, Gegenwart und Zukunft, wobei der Fortschritt in der Zeit nur in Richtung Zukunft aber nicht in Richtung Vergangenheit laufen muss. Uhren messen periodische Vorgänge. Eine Sekunde entspricht 9 192 632 770 Perioden der Strahlung des Überganges zwischen den beiden Hyperfeinstruktur-Niveaus des Grundzustandes von Atomen des ElementsCäsium-133. In der klassischen Physik sind diese periodischen Vorgänge gleichförmig. In der relativistischen Physik hängt der Gang der Uhren von der relativen Bewegung zwischen Beobachter und Uhr zueinander ab. Mit zunehmender Geschwindigkeit gehen Uhren, genauer gesagt vergeht die Zeit selbst langsamer und kommt bei Lichtgeschwindigkeit zum Stillstand. D.h. je weiter man sich der Lichtgeschwindigkeit annähert, um so weniger altert man. Dieser Effekt wird aber erst bei mehr als 90% der Lichtgeschwindigkeit signifikant. 


    Sekunde s - Zeiteinheit

    Sekunde s ist die Basiseinheit der Zeit im internationalen Einheitensystem. 

    Zeiteinheiten umrechnen:

    • 1 Erdenjahr: 1a = 365,24 d (astronomisches Jahr) bzw. 365 d (Kalenderjahr) bzw. 366 d (Schaltjahr)
    • 1 Kalenderjahr: 1.1 bis 31.12  
    • 1 Geschäftsjahr: Zeitraum zwischen 2 aufeinander folgenden Bilanzstichtagen (z.B.: 1.10 - 30.9)
    • 1 Jahr: 1a = 12m Monate
    • 1 Monat: 1m = 28, 29, 30 bzw. 31d Tage bzw 4 Wochen
    • 1 Woche: 1 Woche = 7d Tage
    • 1 Tag: 1d = 24h Stunden
    • 1 Stunde: 1h = 60min Minuten
    • 1 Minute: 1m = 60s Sekunden

    Schreibweisen:

    • 3:40 min entspricht 3 Minuten und 40 Sekunden
    • 3,40 min entspricht 3 Minuten und 24 Sekunden (60 x 0,4 = 24)
    • 220 min entspricht 3,667 Minuten (220:60=3,667) bzw. 3:40 min (220-3*60=3min plus 40s) bzw. 3,667min= 3min plus 0,667min = 3min plus 0,667*60=40s)

    Weg s

    Der Weg s gibt an, wie weit 2 Punkte entlang einer gegebenen Bahn voneinander entfernt sind.

    s=s(t)

    Die Einheit vom Weg bzw. von der Länge ist das Meter. Ursprünglich war das Pariser Urmeter die Basis der Längenmessung. Heute ist das Meter über die Lichtgeschwindigkeit im Vakuum (das ist eine Naturkonstante) definiert, die auf exakt 299 792 458 m/s festgelegt wurde. Ein Meter ist somit jene Länge / jener Weg, den das Licht im Vakuum in einem 299 792 458-stel Bruchteil von einer Sekunde zurücklegt.


    Meter m - Längeneinheit

    Meter m ist die Basiseinheit der Länge im internationalen Einheitensystem. 

    Längeneinheiten umrechnen:

    • Kilometer: 1.000m = 1 km
    • Dezimeter: 10dm = 1m; 10cm=1dm
    • Zentimeter: 100cm = 1m; 10mm=1cm
    • Millimeter: 1.000mm = 1m; 

    Auch das Lichtjahr ist eine Längeneinheit, denn es entspricht der Strecke von \(9,461 \cdot {10^{12}}{\text{km}}\), welche das Licht im Vakuum innerhalb eines Jahres zurücklegt. Die zu unserer Sonne nächstgelegene Sonnensystem namens Alpha Centauri liegt 4,246 Lichtjahre, das sind \(4,246 \cdot 9,461 \cdot {10^{12}}{\text{km}}\) entfernt. 


    Geschwindigkeit v

    Die Geschwindigkeit gibt an, wie schnell sich ein Körper gegenüber einem Bezugssystem bewegt. Die Geschwindigkeit ist eine vektorielle Größe, d.h. sie hat einen Betrag, eine Richtung und eine Orientierung. Etwa wie schnell sich ein Zug auf einem Gleis von Westen nach Osten gegenüber dem Bahnhof bewegt. 

    \(\overrightarrow v = \overrightarrow v \left( t \right) = {\overrightarrow s ^\prime }\left( t \right)\)

    Wird in gleichen aufeinander folgenden Zeiteinheiten immer auch der gleiche Weg zurückgelegt, so bewegt sich der Körper mit konstanter Geschwindigkeit. Man spricht auch von einer gleichförmigen Translation. Die konstante Geschwindigkeit ist der Quotient aus zurückgelegtem Weg und der dafür benötigten Zeit. Die Geschwindigkeit gibt also den zurückgelegten Weg in Relation zur dafür benötigten Zeitspanne an.

    \(\overrightarrow v = \dfrac{{\overrightarrow s }}{t}\)

    \(\eqalign{ & {\text{Geschwindigkeit}} = \dfrac{{{\text{zurückgelegter Weg}}}}{{{\text{Zeit}}}} \cr & \left[ v \right] = \frac{m}{s} \cr} \)

    \(\overrightarrow v = \mathop {\lim }\limits_{\Delta t \to 0} \dfrac{{\Delta \overrightarrow s }}{{\Delta t}} = \dfrac{{d\overrightarrow s }}{{dt}} = \mathop {\overrightarrow s }\limits^ \cdot\)

     

    Die Momentangeschwindigkeit gibt an, wie schnell sich ein Körper zu einem bestimmten Zeitpunkt bewegt. In einem fahrenden Auto wird die Momentangeschwindigkeit Mittels des Tachometers angezeigt. Durch Verkehr, Ampeln und die Beschaffenheit der Fahrtstrecke ändert sich die Geschwindigkeit im Zuge einer Autofahrt jedoch immer wieder. Die Durchschnittsgeschwindigkeit gibt den Mittelwert aller Momentangeschwindigkeiten an. Sie ist ein Rechenwert, den man erhält, wenn man die gefahrene Strecke durch die dafür benötigte Zeitdauer dividiert. Tachometer messen den zurückgelegten Weg indirekt, indem sie zählen wie oft sich die Radachse in einer bestimmten Zeit gedreht hat. Dh sie messen eine Drehzahl und multiplizieren diese mit dem Abrollumfang des Rades. Montiert man ein Rad mit einem größeren Radius muss der Tacho neu justiert werden.

     

    Werden in gleichen aufeinander folgenden Zeiteinheiten unterschiedliche weite Weg zurückgelegt, so liegt eine beschleunigte Bewegung vor, wodurch die Geschwindigkeit des Körpers zu- oder abnimmt, sich dessen Geschwindigkeit also erhöht oder verlangsamt. 

    • Eine positive Beschleunigung bewirkt eine Zunahme der Geschwindigkeit und erfordert eine Kraft die auf den Körper in Richtung seiner Bewegung einwirkt.
    • Eine negative Beschleunigung bewirkt eine Abnahme der Geschwindigkeit und erfordert eine Kraft die auf den Körper entgegen seiner Bewegungsrichtung einwirkt.

    Die Geschwindigkeit wird in der täglichen Praxis in Meter pro Sekunde (m/s) oder in Kilometer pro Stunde (km/h) angegeben. Wichtige Geschwindigkeiten sind

    • Schallgeschwindigkeit ca. 1.234,8 km/h
    • Fluchtgeschwindigkeit der Erde ca. 11,2 km/s
    • Geschwindigkeit der Erde um die Sonne ca. 30 km/s
    • Lichtgeschwindigkeit und somit die maximale Geschwindigkeit für Materie ca 299.792 km/s

    Meter pro Sekunde

    Meter pro Sekunde ist die Einheit der Geschwindigkeit. Ein Körper welcher sich mit konstanter Geschwindigkeit von 1 m/s bewegt, legt in einer Sekunde die Entfernung von einem Meter zurück. Das entspricht der Geschwindigkeit mit der sich ein Fußgänger fortbewegt.

    \(1 \cdot \dfrac{m}{s} = 1 \cdot \dfrac{m}{s} \cdot \dfrac{{1 \cdot km}}{{1000 \cdot m}} \cdot \dfrac{{3600 \cdot s}}{{1 \cdot h}} = \dfrac{{3600}}{{1000}} \cdot \dfrac{{m \cdot km \cdot s}}{{s \cdot m \cdot h}} = 3,6\dfrac{{km}}{h}\)


    Beschleunigung a

    Die Beschleunigung gibt an, wie schnell sich die Geschwindigkeit eines Körpers ändert.

    a=a(t)=v'(t)=s''(t)

    Die Beschleunigung ist eine gerichtete Größe (mathematisch ein Vektor), d.h. sie hat eine Richtung und einen Betrag.

    \(\overrightarrow a = \dfrac{{\overrightarrow v }}{t}\)

    \(\eqalign{ & {\text{Beschleunigung}} = \dfrac{{{\text{Änderung der Geschwindigkeit}}}}{{{\text{Zeit}}}} \cr & \left[ a \right] = \frac{m}{{{s^2}}} \cr} \)

    \(\overrightarrow a = \mathop {\lim }\limits_{\Delta t \to 0} \dfrac{{\Delta \overrightarrow v }}{{\Delta t}} = \dfrac{{d\overrightarrow v \left( t \right)}}{{dt}} = \dfrac{{{d^2}\overrightarrow s }}{{d{t^2}}} = \mathop {\overrightarrow s }\limits^{ \cdot \cdot } = \mathop {\overrightarrow v }\limits^ \cdot \left( t \right)\)


    Meter pro Sekundenquadrat

    Meter pro Sekundenquadrat ms-2 ist die Einheit der Beschleunigung im internationalen Einheitensystem.

    \({\text{Einheit: }}1\dfrac{m}{{{s^2}}}\)

    Damit ein Fahrzeug innerhalb von 10 Sekunden von 0 auf 100 km/h Geschwindigkeit kommt, muss es mit 2,778 m/s² beschleunigt werden.


    Geschwindigkeit einer Internetverbindung

    Die Geschwindigkeit einer Internetverbindung, also ihre Datenübertragungsrate, wird in Megabit pro Sekunde (Mbit/s) gemessen. Sie ist ein Maß dafür, wie viele Daten pro Sekunde von einem Server zum Nutzer (Download-Geschwindigkeit) bzw vom Nutzer zu anderen Nutzern (Upload-Geschwindigkeit) übertragen werden können. 

    • 1 Megabit pro Sekunde Mbps entspricht 1 Million Bit pro Sekunde oder 125.000 Byte (1 Byte = 8 Bit) pro Sekunde.
    • 1 MegaByte pro Sekunde MBps entspricht 1 Million Byte pro Sekunde oder 8 Millionen Bit pro Sekunde; 1 MBps = 8 Mbps

    Übliche kabelgebundene Internet-Download-Geschwindigkeiten liegen zwischen 100 Mbit/s und 1 Gbit/s. Die Upload-Geschwindigkeiten sind meist wesentlich geringer, da Haushalte viele Daten, besonders Videos vom Internet als Stream beziehen und nur wenige Daten (etwa Mails, Chats, Bilder) ins Internet hochladen. Professionelle Webseiten wie maths2mind.com sind Upstream mit 1 GBit/s an das Backbone Internet angebunden.

    Die tatsächliche Geschwindigkeit einer Internetverbindung wird mit sogenannten Speedtest-Tools gemessen. Hier ein Link auf die Datenratenmessung der deutschen Bundesnetzagentur.

    Über einen Transponder eines TV-Satelliten können bei Mietkosten von ca. 2 Millionen € pro Jahr ca. 40 Mbps übertragen werden. Das bietet Platz für 16 SDTV-Kanäle oder 4 HDTV Kanäle mit 5-8 Mbps je Kanal oder einem einzigen 4k-TV-Kanal. Für ein 8k-TV-Signal wären bereits 4 Transponder parallel erforderlich.

    Die erforderliche Datenübertragungsrate für ein Full-HD-Video (1920 x 1080 Pixel) liegt je nach Codec zwischen 3 Mbps (H.265) und 6 Mbps (H.264). Für ein UHD-Video (3840 x 2160 Pixel) liegt die Datenübertragungsrate etwa 4-Mal so hoch. 

    Die erforderliche dauerhafte Speichergeschwindigkeit für ein 6k-RAW-Video beträgt 2600 Mbit/s, die eines 4k-H.264-Slow-Motion-Videos mit 120 fps beträgt 1.880 Mbit/s. Auf einem 100 GB großen Speicherplatz kann man ca. 5 Minuten 6k-RAW-Video oder 10 Minuten 4k-Slow-Motion-Video aufzeichnen. 

    Weg
    Geschwindigkeit
    Einheit der Geschwindigkeit ist Meter pro Sekunde
    Einheit der Beschleunigung ist Meter pro Sekundenquadrat
    Beschleunigung
    Meter
    Momentangeschwindigkeit
    Durchschnittsgeschwindigkeit
    Geschwindigkeit einer Internetverbindung
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Wissenspfad
    Aufgaben

    Maßzahl, Größe und Einheit

    Physikalische Größen sind das Produkt aus einer Maßzahl mit einer Einheit.

    Größe = Maßzahl x Einheit


    Maßzahl

    Die Maßzahl gibt den Betrag (Menge, Stückzahl,...) als eine konkrete Zahl aus der Menge der reellen Zahlen an.


    Basisgröße

    Die Größe(nart) legt fest, um welche physikalische Größe es sich handelt. Es gibt sieben voneinander unabhängige Basisgrößen.


    Abgeleitete Größe

    Aus den sieben von einander unabhängigen Basisgrößen setzen sich alle anderen physikalischen Größen zusammen.


    Basiseinheit

    Jeder der sieben Basisgrößen ist eine Basiseinheit und ein Einheitenzeichen zugeordnet. Manche Basiseinheiten sind von anderen Basiseinheiten abhängig. So geht etwa in die Definition von der Basiseinheit "Meter" die Basiseinheit "Sekunde" ein. Die Einheit umfasst auch die Zehnerpotenz der Maßzahl. Zum Beispiel für 103 steht Kilo, für 106 steht Mega oder für 10-9 steht nano vor der eigentlichen Einheit.


    Einheit

    Einheiten dienen dazu Größen zu messen. Für abgeleitete Größen verwendet man Einheiten, die sich aus Basiseinheiten zusammen setzen.


    Beispiel:
    Zwei Holzstücke mit 7cm bzw. 7m Länge. Diese beiden physikalischen Größen setzen sich zusammen aus

    • einer Maßzahl, die den Betrag angibt (in beiden Fällen "7")
    • einer Größe(nart), die festlegt um welche Qualität es sich handelt (in beiden Fällen "Länge")
    • einer Einheit, die festlegt wie der Betrag abzuzählen ist (im Beispiel "cm" bzw. "m")

    Beispiel:
    Vergleiche 7m, 7cm
    Wir bringen auf die gleiche Einheit "m"
    7cm = 0,07m

    Nun können wir die Werte an Hand ihrer Zahlenwerte wie folgt vergleichen
    7m > 0,07m=7cm

    Ein Holzstück von 7m Länge ist länger als ein Holzstück mit einer Länge von 7cm.


    7 SI Basisgrößen und ihre Basiseinheiten

    Die 7 Basisgrößen sind von einander unabhängige Grundgrößen der Physik. SI steht für „Système international d’unités“, das ist das am weitesten verbreitete internationale Einheitensystem.

    Basisgröße, Formelzeichen Basiseinheit Einheitszeichen
    Länge l Meter m
    Masse m Kilogramm kg
    Zeit t Sekunde s
    elektrische Stromstärke I Ampere A
    Temperatur T Kelvin K
    Stoffmenge n Mol mol
    Lichtstärke Iv Candela cd

     


    SI abgeleitete Größen und ihre Einheiten

    Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten sind

    Abgeleitete physikalische Größe, Formelzeichen Einheit Einheitszeichen
    Fläche A Quadratmeter m²
    Volumen V Kubikmeter m³
    Geschwindigkeit v Kilometer pro Stunde m/s
    Beschleunigung a Meter pro Sekundenquadrat m/s²
    mechanische Kraft F Newton N
    Frequenz f Herz Hz
    Arbeit W, Energie E, Wärmemenge Q Joule J
    mechanische Leistung P Watt W
    Druck p Pascal Pa
    Lichtstrom Φ Lumen lm
    Beleuchtungsstärke E Lux lx

     


    SI abgeleitete Größen und ihre Einheiten aus der Elektrotechnik

    Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten aus dem Gebiet der Elektrotechnik sind

    Abgeleitete elektrotechnische Größe, Formelzeichen Einheit Einheitszeichen
    magnetische Feldstärke \({\overrightarrow H }\) Ampere pro m A/m
    elektrische Feldstärke \({\overrightarrow E }\) Volt pro m V/m
    Spannung U Volt V
    Arbeit W, Energie E Joule J
    elektrische Ladung Q Coulomb C
    elektrische Leistung P Watt W
    ohmscher Widerstand R Ohm \(\Omega\)
    elektrische Kapazität C Farad F
    magnetische Induktivität L Henry H
    magnetischer Fluss \(\Phi\) Weber Wb
    magnetische Flussdichte \({\overrightarrow B }\) Tesla T

     


    Physikalische Größen - Auswahl und Definition gemäß Formelsammlung AHS

    Größe Formel Formel Formel
    Dichte ρ \(\rho = \dfrac{m}{v}\)    
    Leistung P \(P = \dfrac{{\Delta E}}{{\Delta t}}\) \(P = \dfrac{{\Delta W}}{{\Delta t}}\) \(P = \dfrac{{dW\left( t \right)}}{{dt}}\)
    Kraft F \(F = m \cdot a\) \(F = \dfrac{{dW}}{{ds}}\)  
    Arbeit \(W = F \cdot s\) \(W = \int {F\left( s \right)\,\,\operatorname{ds} }\)  
    kinetische Energie Ekin \({E_{kin}} = \dfrac{{m \cdot {v^2}}}{2}\)    
    potentielle Energie Epot \({E_{pot}} = m \cdot g \cdot h\)    
    gleichförmige geradlinige Bewegung v(t) \(v = \dfrac{s}{t}\) \(v = \dfrac{{ds}}{{dt}}\) \(v\left( t \right) = s'\left( t \right) = \dfrac{{ds}}{{dt}}\)
    gleichmäßig beschleunigte geradlinige Bewegung a(t) \(v = a \cdot t + {v_0}\) \(a = \dfrac{{dv}}{{dt}}\) \(a\left( t \right) = v'\left( t \right) = \dfrac{{dv}}{{dt}} = s''\left( t \right) = \dfrac{{{d^2}s}}{{d{t^2}}}\)

     


    Bewegungsvorgänge - Auswahl und Definition gemäß Formelsammlung BHS

    Größe Formel
    Zeit t \(t\)
    Weg-Zeit-Funktion s(t) \(s\left( t \right) = \int {v\left( t \right)} \,\,dt\)
    Geschwindigkeit-Zeit-Funktion v(t) \(v(t) = s'\left( t \right) = \mathop s\limits^ \bullet = \dfrac{{ds}}{{dt}} = \int {a\left( t \right)} \,\,dt\)
    Beschleunigung-Zeit-Funktion a(t) \(a\left( t \right) = s''\left( t \right) = \mathop s\limits^{ \bullet \bullet } = \dfrac{{{d^2}s}}{{d{t^2}}} = v'\left( t \right) = \mathop v\limits^ \bullet = \dfrac{{dv}}{{dt}}\)

    Anmerkung zur auf Universitäten üblichen Kurzschreibweise von "Ableitungen nach der Zeit": Die Notation mit einem "Punkt" über dem Formelzeichen bedeutet, dass es sich um die 1 Ableitung nach der Zeit handelt. Zwei "Punkte" bedeuten, dass es sich um die 2. Ableitung nach der Zeit handelt.

    Bild
    Bewegungsaufgaben

    Größen und ihre Einheiten - Auswahl gemäß Formelsammlung AHS

    Größe Einheit Symbol Beziehung zu SI-Einheiten
    Temperatur T Grad Celsius
    Grad Kelvin
    °C
    K
    \(\Delta t = \Delta T\)
    Frequenz f Hertz Hz \(1 \cdot Hz = 1 \cdot {s^{ - 1}}\)
    Arbeit W, Energie E, Wärmemenge Q Joule J \(1 \cdot J = 1 \cdot kg \cdot {m^{2}}\cdot s^{ - 2}\)
    Kraft F Newton N \(1 \cdot N = 1 \cdot kg \cdot m \cdot {s^{ - 2}}\)
    Drehmoment M Newtonmeter \(N \cdot m\) \(1 \cdot N \cdot m = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 2}}\)
    Elektrischer Widerstand R Ohm \(\Omega\) \(1 \cdot \Omega = 1 \cdot V \cdot {A^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 2}} \cdot {s^{ - 3}}\)
    Druck p Pascal Pa \(1 \cdot Pa = 1 \cdot N \cdot {m^{ - 2}} = 1 \cdot kg \cdot {m^{ - 1}} \cdot {s^{ - 2}}\)
    Elektrische Stromstärke I Ampere A \(1 \cdot A = 1 \cdot C \cdot {s^{ - 1}}\)
    Elektrische Spannung U Volt V \(1 \cdot V = 1 \cdot J \cdot {C^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 1}} \cdot {s^{ - 3}}\)
    Leistung P Watt W \(1 \cdot W = 1 \cdot J \cdot {s^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 3}}\)
    Système international d’unités - SI System internationaler Einheiten
    Maßzahl
    Basisgröße
    Basiseinheit
    Weg-Zeit-Funktion
    Geschwindigkeit-Zeit-Funktion
    Beschleunigung-Zeit-Funktion
    Länge l
    Meter
    Masse m
    Kilogramm (kg)
    Zeit t
    Sekunde (s)
    Elektrische Stromstärke I
    Ampere (A)
    Temperatur T
    Kelvin (K)
    Stoffmenge n
    Mol (mol)
    Lichtstärke Iv
    Candela (cd)
    Geschwindigkeit
    Beschleunigung
    Einheit der Beschleunigung ist Meter pro Sekundenquadrat
    Kraft F
    Newton (N)
    Frequenz f
    Herz (Hz)
    Arbeit W
    Energie E
    Wärmemenge Q
    Joule (J)
    Mechanische Leistung P
    Watt (W)
    Druck p
    Pascal (Pa)
    Lichtstrom Phi
    Lumen (lm)
    Beleuchtungsstärke E
    Lux (lx)
    Magnetische Feldstärke
    Ampere pro Meter (A/m)
    Elektrische Feldstärke
    Volt pro Meter (V/m)
    Elektrische Spannung U
    Volt (V)
    Elektrische Ladung
    Coulomb
    Elektrischer Widerstand R
    Ohm (Ω)
    Elektrische Kapazität C
    Farad (F)
    Magnetische Induktivität L
    Henry (H)
    Magnetischer Fluss
    Weber (Einheit für magnetischen Fluss)
    Magnetische Flussdichte
    Tesla (Einheit magnetischen Flussdichte)
    Kinetische Energie
    Potentielle Energie
    Gleichförmig geradlinige Bewegung
    Gleichmäßig beschleunigte geradlinige Bewegung
    Einheit der Geschwindigkeit ist Meter pro Sekunde
    Abgeleitete Größe
    Einheit
    Bewegungsaufgaben
    Fragen oder Feedback
    Aufgaben
    Lösungsweg

    Aufgabe 4251

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 12. Jänner 2021 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    New Horizons - Aufgabe A_294

    New Horizons ist eine Raumsonde, die im Jahr 2006 von der Erde aus in den Weltraum gestartet ist und immer noch unterwegs ist.

    Teil a

    Rund 9 Jahre nach ihrem Start flog New Horizons am Zwergplaneten Pluto vorbei. Sie bewegte sich in diesen 9 Jahren mit einer mittleren Geschwindigkeit von 16,2 km/s. Es gilt vereinfacht: 1 Jahr = 365 Tage.

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie die Länge des Weges, den New Horizons in 9 Jahren zurückgelegt hat.

    [1 Punkt]

    New Horizons - Aufgabe_A_294
    Einheit der Geschwindigkeit ist Meter pro Sekunde
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Jänner 2021 - kostenlos vorgerechnet
    Zahlen und Maße
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.3
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Smartphone
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH