Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Elektrotechnik und Physik
  3. Grundlagen der Physik
  4. Basiseinheiten der Physik und die Naturkonstanten
  5. Basiseinheiten der Physik

Basiseinheiten der Physik

    Formel

    Maßzahl, Größe und Einheit

    Physikalische Größen sind das Produkt aus einer Maßzahl mit einer Einheit.

    Größe = Maßzahl x Einheit


    Maßzahl

    Die Maßzahl gibt den Betrag (Menge, Stückzahl,...) als eine konkrete Zahl aus der Menge der reellen Zahlen an.


    Basisgröße

    Die Größe(nart) legt fest, um welche physikalische Größe es sich handelt. Es gibt sieben voneinander unabhängige Basisgrößen.


    Abgeleitete Größe

    Aus den sieben von einander unabhängigen Basisgrößen setzen sich alle anderen physikalischen Größen zusammen.


    Basiseinheit

    Jeder der sieben Basisgrößen ist eine Basiseinheit und ein Einheitenzeichen zugeordnet. Manche Basiseinheiten sind von anderen Basiseinheiten abhängig. So geht etwa in die Definition von der Basiseinheit "Meter" die Basiseinheit "Sekunde" ein. Die Einheit umfasst auch die Zehnerpotenz der Maßzahl. Zum Beispiel für 103 steht Kilo, für 106 steht Mega oder für 10-9 steht nano vor der eigentlichen Einheit.


    Einheit

    Einheiten dienen dazu Größen zu messen. Für abgeleitete Größen verwendet man Einheiten, die sich aus Basiseinheiten zusammen setzen.


    Beispiel:
    Zwei Holzstücke mit 7cm bzw. 7m Länge. Diese beiden physikalischen Größen setzen sich zusammen aus

    • einer Maßzahl, die den Betrag angibt (in beiden Fällen "7")
    • einer Größe(nart), die festlegt um welche Qualität es sich handelt (in beiden Fällen "Länge")
    • einer Einheit, die festlegt wie der Betrag abzuzählen ist (im Beispiel "cm" bzw. "m")

    Beispiel:
    Vergleiche 7m, 7cm
    Wir bringen auf die gleiche Einheit "m"
    7cm = 0,07m

    Nun können wir die Werte an Hand ihrer Zahlenwerte wie folgt vergleichen
    7m > 0,07m=7cm

    Ein Holzstück von 7m Länge ist länger als ein Holzstück mit einer Länge von 7cm.


    7 SI Basisgrößen und ihre Basiseinheiten

    Die 7 Basisgrößen sind von einander unabhängige Grundgrößen der Physik. SI steht für „Système international d’unités“, das ist das am weitesten verbreitete internationale Einheitensystem.

    Basisgröße, Formelzeichen Basiseinheit Einheitszeichen
    Länge l Meter m
    Masse m Kilogramm kg
    Zeit t Sekunde s
    elektrische Stromstärke I Ampere A
    Temperatur T Kelvin K
    Stoffmenge n Mol mol
    Lichtstärke Iv Candela cd

     


    SI abgeleitete Größen und ihre Einheiten

    Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten sind

    Abgeleitete physikalische Größe, Formelzeichen Einheit Einheitszeichen
    Fläche A Quadratmeter m²
    Volumen V Kubikmeter m³
    Geschwindigkeit v Kilometer pro Stunde m/s
    Beschleunigung a Meter pro Sekundenquadrat m/s²
    mechanische Kraft F Newton N
    Frequenz f Herz Hz
    Arbeit W, Energie E, Wärmemenge Q Joule J
    mechanische Leistung P Watt W
    Druck p Pascal Pa
    Lichtstrom Φ Lumen lm
    Beleuchtungsstärke E Lux lx

     


    SI abgeleitete Größen und ihre Einheiten aus der Elektrotechnik

    Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten aus dem Gebiet der Elektrotechnik sind

    Abgeleitete elektrotechnische Größe, Formelzeichen Einheit Einheitszeichen
    magnetische Feldstärke \({\overrightarrow H }\) Ampere pro m A/m
    elektrische Feldstärke \({\overrightarrow E }\) Volt pro m V/m
    Spannung U Volt V
    Arbeit W, Energie E Joule J
    elektrische Ladung Q Coulomb C
    elektrische Leistung P Watt W
    ohmscher Widerstand R Ohm \(\Omega\)
    elektrische Kapazität C Farad F
    magnetische Induktivität L Henry H
    magnetischer Fluss \(\Phi\) Weber Wb
    magnetische Flussdichte \({\overrightarrow B }\) Tesla T

     


    Physikalische Größen - Auswahl und Definition gemäß Formelsammlung AHS

    Größe Formel Formel Formel
    Dichte ρ \(\rho = \dfrac{m}{v}\)    
    Leistung P \(P = \dfrac{{\Delta E}}{{\Delta t}}\) \(P = \dfrac{{\Delta W}}{{\Delta t}}\) \(P = \dfrac{{dW\left( t \right)}}{{dt}}\)
    Kraft F \(F = m \cdot a\) \(F = \dfrac{{dW}}{{ds}}\)  
    Arbeit \(W = F \cdot s\) \(W = \int {F\left( s \right)\,\,\operatorname{ds} }\)  
    kinetische Energie Ekin \({E_{kin}} = \dfrac{{m \cdot {v^2}}}{2}\)    
    potentielle Energie Epot \({E_{pot}} = m \cdot g \cdot h\)    
    gleichförmige geradlinige Bewegung v(t) \(v = \dfrac{s}{t}\) \(v = \dfrac{{ds}}{{dt}}\) \(v\left( t \right) = s'\left( t \right) = \dfrac{{ds}}{{dt}}\)
    gleichmäßig beschleunigte geradlinige Bewegung a(t) \(v = a \cdot t + {v_0}\) \(a = \dfrac{{dv}}{{dt}}\) \(a\left( t \right) = v'\left( t \right) = \dfrac{{dv}}{{dt}} = s''\left( t \right) = \dfrac{{{d^2}s}}{{d{t^2}}}\)

     


    Bewegungsvorgänge - Auswahl und Definition gemäß Formelsammlung BHS

    Größe Formel
    Zeit t \(t\)
    Weg-Zeit-Funktion s(t) \(s\left( t \right) = \int {v\left( t \right)} \,\,dt\)
    Geschwindigkeit-Zeit-Funktion v(t) \(v(t) = s'\left( t \right) = \mathop s\limits^ \bullet = \dfrac{{ds}}{{dt}} = \int {a\left( t \right)} \,\,dt\)
    Beschleunigung-Zeit-Funktion a(t) \(a\left( t \right) = s''\left( t \right) = \mathop s\limits^{ \bullet \bullet } = \dfrac{{{d^2}s}}{{d{t^2}}} = v'\left( t \right) = \mathop v\limits^ \bullet = \dfrac{{dv}}{{dt}}\)

    Anmerkung zur auf Universitäten üblichen Kurzschreibweise von "Ableitungen nach der Zeit": Die Notation mit einem "Punkt" über dem Formelzeichen bedeutet, dass es sich um die 1 Ableitung nach der Zeit handelt. Zwei "Punkte" bedeuten, dass es sich um die 2. Ableitung nach der Zeit handelt.

    Bild
    Bewegungsaufgaben

    Größen und ihre Einheiten - Auswahl gemäß Formelsammlung AHS

    Größe Einheit Symbol Beziehung zu SI-Einheiten
    Temperatur T Grad Celsius
    Grad Kelvin
    °C
    K
    \(\Delta t = \Delta T\)
    Frequenz f Hertz Hz \(1 \cdot Hz = 1 \cdot {s^{ - 1}}\)
    Arbeit W, Energie E, Wärmemenge Q Joule J \(1 \cdot J = 1 \cdot kg \cdot {m^{2}}\cdot s^{ - 2}\)
    Kraft F Newton N \(1 \cdot N = 1 \cdot kg \cdot m \cdot {s^{ - 2}}\)
    Drehmoment M Newtonmeter \(N \cdot m\) \(1 \cdot N \cdot m = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 2}}\)
    Elektrischer Widerstand R Ohm \(\Omega\) \(1 \cdot \Omega = 1 \cdot V \cdot {A^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 2}} \cdot {s^{ - 3}}\)
    Druck p Pascal Pa \(1 \cdot Pa = 1 \cdot N \cdot {m^{ - 2}} = 1 \cdot kg \cdot {m^{ - 1}} \cdot {s^{ - 2}}\)
    Elektrische Stromstärke I Ampere A \(1 \cdot A = 1 \cdot C \cdot {s^{ - 1}}\)
    Elektrische Spannung U Volt V \(1 \cdot V = 1 \cdot J \cdot {C^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 1}} \cdot {s^{ - 3}}\)
    Leistung P Watt W \(1 \cdot W = 1 \cdot J \cdot {s^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 3}}\)
    Système international d’unités - SI System internationaler Einheiten
    Maßzahl
    Basisgröße
    Basiseinheit
    Weg-Zeit-Funktion
    Geschwindigkeit-Zeit-Funktion
    Beschleunigung-Zeit-Funktion
    Länge l
    Meter
    Masse m
    Kilogramm (kg)
    Zeit t
    Sekunde (s)
    Elektrische Stromstärke I
    Ampere (A)
    Temperatur T
    Kelvin (K)
    Stoffmenge n
    Mol (mol)
    Lichtstärke Iv
    Candela (cd)
    Geschwindigkeit
    Beschleunigung
    Einheit der Beschleunigung ist Meter pro Sekundenquadrat
    Kraft F
    Newton (N)
    Frequenz f
    Herz (Hz)
    Arbeit W
    Energie E
    Wärmemenge Q
    Joule (J)
    Mechanische Leistung P
    Watt (W)
    Druck p
    Pascal (Pa)
    Lichtstrom Phi
    Lumen (lm)
    Beleuchtungsstärke E
    Lux (lx)
    Magnetische Feldstärke
    Ampere pro Meter (A/m)
    Elektrische Feldstärke
    Volt pro Meter (V/m)
    Elektrische Spannung U
    Volt (V)
    Elektrische Ladung
    Coulomb
    Elektrischer Widerstand R
    Ohm (Ω)
    Elektrische Kapazität C
    Farad (F)
    Magnetische Induktivität L
    Henry (H)
    Magnetischer Fluss
    Weber (Einheit für magnetischen Fluss)
    Magnetische Flussdichte
    Tesla (Einheit magnetischen Flussdichte)
    Kinetische Energie
    Potentielle Energie
    Gleichförmig geradlinige Bewegung
    Gleichmäßig beschleunigte geradlinige Bewegung
    Einheit der Geschwindigkeit ist Meter pro Sekunde
    Abgeleitete Größe
    Einheit
    Bewegungsaufgaben

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(5,149,183)
    Bild
    Illustration Strandliegen 1050x450
    Startseite
    Wissenspfad

    Zur aktuellen Lerneinheit empfohlenes Vorwissen

    Grundlagen der Physik

    Die Grundlagen der Physik sind ein Teilgebiet der Naturwissenschaften. Für die zugehörigen Formeln, Definitionen, Rechenregeln und Beispiele haben wir folgende Gliederung gewählt: Basiseinheiten der Physik und die Naturkonstanten, Mechanik - Die Lehre von bewegten Körpern und Kräften, Thermodynamik, Relativitätstheorie, Atom- und Kernphysik, Strahlen- und Wellentheorie des Lichts, Quantenphysik, Standardmodell der Kosmologie, Standardmodell der Elementarteilchen, Die 4 Wechselwirkungen und der Higgs Mechanismus

    Aktuelle Lerneinheit

    Basiseinheiten der Physik

    Physikalische Größen setzen sich aus einer Maßzahl, einer Größe und einer Einheit zusammen. Die 7 Basisgrößen sind von einander unabhängige Grundgrößen der Physik.

    Verbreitere dein Wissen zur aktuellen Lerneinheit

    Mechanik

    Mechanik ist die Lehre von bewegten Körpern und Kräften.

    Fundamentale Wechselwirkungen

    Heute beschreiben die 4 fundamentale Wechselwirkungen, wie physikalische Objekte einander beeinflussen können

    Standardmodell der Elementarteilchen

    Das Standardmodell der Elementarteilchen besagt, dass es 12 materiebildende Fermionen und zwischen ihnen 7 Bosonen als Austauschteilchen der 4 Wechselwirkungen gibt.

    Entstehungsgeschichte des Universums

    Das Standardmodell der Kosmologie beschreibt die Expansion des Universums seit der Planckzeit 

    Unterschied Quantenphysik und klassischen Physik

    In der Quantenphysik existiert ein Teilchen gleichzeitig ein wenig dort, wo die aus seiner Wellenfunktion hergeleitete Aufenthaltswahrscheinlichkeit größer als Null ist. Vor und nach der Messung ist das Teilchen eine Welle, während der Messung wird es zu räumlich vorhandener Materie.

    Strahlen- und Wellentheorie des Lichtes

    Das Licht ist eine elektromagnetische Welle, deren Welle-Teilchen-Dualismus seine Erklärung in der Quantenmechanik findet. Photonen sind die Quanten der elektromagnetischen Wechselwirkung.

    Atom- und Kernphysik

    Die Atom- und Kernphysik beschäftig sich mit dem Aufbau der Atomhülle und des Atomkerns. 12 Fermionen und 7 Bosonen (inkl. dem noch nicht nachgewiesenem Gravitron) bilden die bekannte Materie. Die "Dunkle Materie" besteht vermutlich aus weiteren materiebildenden Teilchen.

    SRT und ART

    Aus den Newton'schen Gesetzen für Mechanik und Gravitation entwickelte sich die spezielle Relativitätstheorie für Systeme, die sich mit konstanter Geschwindigkeit bewegen und die allgemeine Relativitätstheorie für beschleunigte Systeme unter Einbeziehung der Gravitation

    Hauptsätze der Thermodynamik

    Die Thermodynamik beschäftigt sich mit Prozessen der Energieumwandlung sowie mit Zustandsänderungen von Körpern wenn Wärme zu- oder abgeführt wird.

    Aufgaben zu diesem Thema
    Lösungsweg

    Aufgabe 1621

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 8. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Radfahrer

    Zwei Radfahrer A und B fahren mit Elektrofahrrädern vom gleichen Startpunkt aus mit jeweils konstanter Geschwindigkeit auf einer geradlinigen Straße in dieselbe Richtung. In der nachstehenden Abbildung sind die Graphen der Funktionen sA und sB dargestellt, die den von den Radfahrern zurückgelegten Weg in Abhängigkeit von der Fahrzeit beschreiben. Die markierten Punkte haben die Koordinaten (0 | 0), (2 | 0) bzw. (8 | 2 400).

    Strahl f Strahl f: Strahl durch A, C Strahl g Strahl g: Strahl durch B, C Punkt A A = (0, 0) Punkt A A = (0, 0) Punkt B B = (2, 0) Punkt B B = (2, 0) Punkt C C = (8, 2400) Punkt C C = (8, 2400) t in Minuten Text1 = “t in Minuten” s in Meter Text2 = “s in Meter”


    Aufgabenstellung:
    Kreuzen Sie die beiden Aussagen an, die der obigen Abbildung entnommen werden können!

    • Aussage 1: Der Radfahrer B startet zwei Minuten später als der Radfahrer A.
    • Aussage 2: Die Geschwindigkeit des Radfahrers A betragt 200 Meter pro Minute.
    • Aussage 3: Der Radfahrer B holt den Radfahrer A nach einer Fahrstrecke von 2,4 Kilometern ein.
    • Aussage 4: Acht Minuten nach dem Start von Radfahrer B sind die beiden Radfahrer gleich weit vom Startpunkt entfernt.
    • Aussage 5: Vier Minuten nach der Abfahrt des Radfahrers A sind die beiden Radfahrer 200 Meter voneinander entfernt.
    Radfahrer - 1621. Aufgabe 1_621
    Weg-Zeit-Funktion
    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 2.2
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1332

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 18. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Pflanzenwachstum

    Die unten stehende Abbildung beschreibt näherungsweise das Wachstum einer schnellwüchsigen Pflanze. Sie zeigt die Wachstumsgeschwindigkeit v in Abhängigkeit von der Zeit t während eines Zeitraums von 60 Tagen.

    Funktion f f(x) = Wenn[0 < x < 40, 1 / 10 x] Funktion g g(x) = Wenn[40 < x < 50, 4] Funktion h h(x) = Wenn[50 < x < 60, -2 / 5 (x - 60)] v(t) (in cm/Tag) Text1 = "v(t) (in cm/Tag)" t (in Tagen) Text2 = "t (in Tagen)" v Text3 = "v"


    Aufgabenstellung:
    Geben Sie an, um wie viel cm die Pflanze in diesem Zeitraum insgesamt gewachsen ist!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AN 4.3
    Pflanzenwachstum - 1332. Aufgabe 1_332
    Weg-Zeit-Funktion
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1093

    AHS - 1_086 & Lehrstoff: AN 1.3
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Freier Fall

    Für einen frei fallenden Körper ist eine Zeit-Weg-Funktion s(t) durch \(s\left( t \right) = \dfrac{g}{2} \cdot {t^2}\) gegeben. Dabei ist g ≈ 10 m/s2 die Fallbeschleunigung.


    Aufgabenstellung:
    Berechnen Sie die mittlere Geschwindigkeit in m/s im Zeitintervall [2; 4] Sekunden!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AN 1.3
    Freier Fall - 1093. Aufgabe 1_093
    Differenzenquotient
    Weg-Zeit-Funktion
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 4209

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Fressverhalten von Furchenwalen - Aufgabe A_288

    Teil a

    Bei einem Beutestoß nehmen Furchenwale mit weit geöffnetem Maul eine große Menge Meerwasser und die darin enthaltene Beute auf. Forscher/innen beobachteten dieses Fressverhalten. Sie ermittelten mithilfe von Sensoren die Geschwindigkeit des Furchenwals bei einem Beutestoß, die Größe der Maulöffnung und das gesamte Wasservolumen, das dabei aufgenommen wird.

    Die Geschwindigkeit eines Furchenwals bei einem Beutestoß, der insgesamt 20 s dauert, kann näherungsweise durch die Funktion v beschrieben werden (siehe nachstehende Abbildung).

    Funktion f Funktion f: f(x) = Wenn(0 < x < 20, TrendPoly({A, B, C, D, E, F, J, G, H, I})) v Text1 = “v” Geschwindigkeit in m/s Text2 = “Geschwindigkeit in m/s” Zeit sit Beginn des Beutestoßes in s Text3 = “Zeit sit Beginn des Beutestoßes in s”


    1. Teilaufgabe - Bearbeitungszeit 5:40
    Schätzen Sie die Länge s desjenigen Weges ab, der bei diesem Beutestoß zurückgelegt wird.
    [1 Punkt]


    Ein Forscher behauptet: „Der Furchenwal erreicht bei diesem Beutestoß eine maximale Geschwindigkeit von 15 km/h.“

    2. Teilaufgabe - Bearbeitungszeit 5:40
    Weisen Sie nach, dass diese Behauptung falsch ist.
    [1 Punkt]

    Fressverhalten von Furchenwalen - Aufgabe A_288
    Weg-Zeit-Funktion
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2020 - kostenlos vorgerechnet
    Integralrechnung
    Funktionale Zusammenhänge
    Zahlen und Maße
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.5
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.1
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.3
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Sandstrand 1050x450
    Startseite
    Lösungsweg

    Aufgabe 1384

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 14. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Freier Fall

    Der Weg, den ein Stein im freien Fall zurücklegt, kann näherungsweise durch den funktionalen Zusammenhang \(s\left( t \right) = 5 \cdot {t^2}\) beschrieben werden. Dabei wird die Fallzeit t in Sekunden und der in dieser Zeit zurückgelegte Weg s(t) in Metern gemessen.


    Aufgabenstellung:
    Berechnen Sie die Geschwindigkeit in Metern pro Sekunde (m/s), die der Stein nach einer Fallzeit von t = 2 Sekunden hat!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AN 1.3
    Freier Fall - 1384. Aufgabe 1_384
    Weg-Zeit-Funktion
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 243

    Geschwindigkeiten im Weg-Zeit Diagramm

    Das nachfolgende Weg-Zeit Diagramm zeigt das Flugverhalten einer Stubenfliege.

    Funktion g g(x) = Wenn[(x > 0) ∧ (x < 2), x] Funktion h h(x) = Wenn[(x > 2) ∧ (x < 3), 2] Funktion i i(x) = Wenn[(x > 3) ∧ (x < 4.5), 2x - 4] Funktion j j(x) = Wenn[x > 4.5, 5]

    Geschwindigkeit  
    \({v_{Fliege}} = 0\,\,m/s\) A
    \({v_{Fliege}} = 1\,\,m/s\) B
    \({v_{Fliege}} = 2\,\,m/s\) C
    \({v_{Fliege}} = 2,5\,\,m/s\) D
    \({v_{Fliege}} = 5\,\,m/s\) E

     


    Aufgabenstellung:
    Ordne jedem Zeitintervall jene Geschwindigkeit (aus A bis F) zu, die dem jeweiligen Flugverhalten der Fliege entspricht.

    Zeitintervall Deine Antwort
    \(\left[ {0;\,2} \right]\)  
    \( \left[ {2;\,3} \right]\)  
    \(\left[ {3;\,4,5} \right]\)  
    \(\left[ {4,5;\,10} \right]\)  
    Geschwindigkeit
    Weg-Zeit-Funktion
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1153

    AHS - 1_153 & Lehrstoff: FA 2.3
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Zeit-Weg-Diagramm, Geschwindigkeiten
    Das folgende Zeit-Weg-Diagramm stellt eine Bewegung dar. Der Weg wird in Metern (m), die Zeit in Sekunden (s) gemessen. Zur Beschreibung dieser Bewegung sind zudem verschiedene Geschwindigkeiten (vx) gegeben.

    Funktion f f(x) = Wenn[0 < x < 1.5, 20x] Funktion g g(x) = Wenn[1.5 < x < 3, 30] Funktion h h(x) = Wenn[3 < x < 4, 50x - 120] Funktion i i(x) = Wenn[4 < x < 6, 10x + 40] t (in s) Text1 = "t (in s)" s (in m) Text2 = "s (in m)" s(t) Text3 = "s(t)" s(t) Text3 = "s(t)" s(t) Text3 = "s(t)" s(t) Text3 = "s(t)"

    A \({v_A} = 0\dfrac{m}{s}\)
    B \({v_B} = 5\dfrac{m}{s}\)
    C \({v_C} = 10\dfrac{m}{s}\)
    D \({v_D} = 20\frac{m}{s}\)
    E \({v_E} = 25\dfrac{m}{s}\)
    F \({v_F} = 50\dfrac{m}{s}\)

     


    Aufgabenstellung:
    Ordnen Sie jeweils jedem Zeitintervall jene Geschwindigkeit (aus A bis F) zu, die der Bewegung in diesem Intervall entspricht!

      Deine Antwort
    \(\left[ {0;1,5} \right]\)  
    \(\left[ {1,5;3} \right]\)  
    \(\left[ {3;4} \right]\)  
    \(\left[ {4;6} \right]\)  
    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 2.3
    Geschwindigkeiten - 1153. Aufgabe 1_153
    Weg-Zeit-Funktion
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4015

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-A-Aufgaben - 5. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Der Bodensee - Aufgabe A_243

    Teil c
    Sabine und Johanna fahren mit ihren Fahrrädern auf einem Radweg in Richtung Ludwigshafen (siehe nachstehende Skizze). Sabine startet im 12 Kilometer von Bregenz entfernten Lindau und fährt mit einer konstanten Geschwindigkeit von 15 km/h. Johanna startet mit einem E-Bike eine Stunde später in Bregenz und fährt mit einer konstanten Geschwindigkeit von 30 km/h.

    Strecke f Strecke f: Strecke A, B Strecke g Strecke g: Strecke B, C Strecke h Strecke h: Strecke C, D Strecke i Strecke i: Strecke D, E Strecke j Strecke j: Strecke E, F Strecke k Strecke k: Strecke F, G Strecke l Strecke l: Strecke G, H Strecke m Strecke m: Strecke H, I Strecke n Strecke n: Strecke I, J Strecke p Strecke p: Strecke J, K Strecke q Strecke q: Strecke K, L Strecke r Strecke r: Strecke L, M Strecke s Strecke s: Strecke M, N Strecke t Strecke t: Strecke N, O Strecke a Strecke a: Strecke O, P Strecke b Strecke b: Strecke P, Q Strecke c Strecke c: Strecke Q, R Strecke d Strecke d: Strecke R, S Punkt A A = (-3, 11.85) Punkt A A = (-3, 11.85) Punkt P P = (9.16, 6.24) Punkt P P = (9.16, 6.24) Punkt S S = (9.44, 3.59) Punkt S S = (9.44, 3.59) Ludwigshafen Text1 = “Ludwigshafen” Lindau Text2 = “Lindau” Bregenz Text3 = “Bregenz” 12 km Text4 = “12 km”

    Sabines Entfernung von Bregenz kann näherungsweise durch die lineare Funktion S beschrieben werden.

    Funktion f f(x) = Wenn(0 < x < 4.5, 70 + 55 / 4 (x - 4)) Entferung von Bregenz in km text1 = “Entferung von Bregenz in km” Zeit nach Sabines Start in h text2 = “Zeit nach Sabines Start in h” S text3 = “S”


    1. Teilaufgabe - Bearbeitungszeit 5:40
    Zeichnen Sie im obigen Diagramm den Graphen der linearen Funktion J ein, der Johannas Entfernung von Bregenz darstellt.
    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40
    Lesen Sie ab, wie lange Johanna unterwegs ist, bis sie Sabine einholt.
    [1 Punkt]


    3. Teilaufgabe - Bearbeitungszeit 5:40
    Auch Otto fährt auf diesem Radweg von Bregenz in Richtung Ludwigshafen. Seine Geschwindigkeit kann durch eine Funktion v beschrieben werden.

    t Zeit in h
    v(t) Geschwindigkeit zur Zeit t in km/h

    Beschreiben Sie unter Angabe der entsprechenden Einheit, was mit \(\int\limits_0^2 {v\left( t \right)} \,\,dt\) im gegebenen Sachzusammenhang berechnet wird.
    [1 Punkt]

    Der Bodensee - Aufgabe A_253
    Weg-Zeit-Funktion
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Lineare Funktionen
    Integralrechnung
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.8
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.2
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Lösungsweg

    Aufgabe 4243

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Winterliche Fahrbahnverhältnisse im Straßenverkehr - Aufgabe A_143

    Teil a

    Die Bremswege eines PKW auf schneebedeckter sowie auf trockener Fahrbahn werden miteinander verglichen. Das nachstehende Geschwindigkeit-Zeit-Diagramm zeigt modellhaft den zeitlichen Verlauf der Geschwindigkeit vS auf schneebedeckter Fahrbahn sowie den zeitlichen Verlauf der Geschwindigkeit vT auf trockener Fahrbahn vom Reagieren der Bremse bis zum Stillstand des PKW.

    Bild
    beispiel_4243_1

     

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Ermitteln Sie mithilfe des obigen Diagramms die (negative) Beschleunigung auf schneebedeckter Fahrbahn.

    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Der Bremsweg ist diejenige Strecke, die der PKW vom Reagieren der Bremse (t = 0) bis zum Stillstand zurücklegt. Veranschaulichen Sie im obigen Diagramm den Bremsweg auf trockener Fahrbahn.

    [1 Punkt]


    3. Teilaufgabe - Bearbeitungszeit 5:40

    Ermitteln Sie mithilfe des obigen Diagramms die Differenz zwischen dem Bremsweg auf schneebedeckter Fahrbahn und dem Bremsweg auf trockener Fahrbahn.

    [1 Punkt]

    Winterliche Fahrbahnverhältnisse im Straßenverkehr - Aufgabe A_143
    Geschwindigkeit-Zeit-Funktion
    Weg-Zeit-Funktion
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - September 2020 - kostenlos vorgerechnet
    Bewegungsaufgaben
    Integralrechnung
    Differenzialrechnung
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.5
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4244

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Winterliche Fahrbahnverhältnisse im Straßenverkehr - Aufgabe A_143

    Teil b

    Auf einer geraden Teststrecke werden mit zwei PKWs Bremsversuche durchgeführt. Die beiden PKWs fahren dabei in die gleiche Richtung. Während der ersten 5 s des Bremsvorgangs werden die Abstande der beiden PKWs zu einer Markierungslinie gemessen. Diese Abstande können näherungsweise durch die nachstehenden Funktionen beschrieben werden:

    \(\begin{array}{l} {s_A}\left( t \right) = - 2 \cdot {t^2} + 20 \cdot t + 12\\ {s_B}\left( t \right) = - 2 \cdot {t^2} + 24 \cdot t \end{array}\)

    mit:

    • sA(t) ... Abstand des PKW A zur Markierungslinie zur Zeit t in m
    • sB(t) ... Abstand des PKW B zur Markierungslinie zur Zeit t in m

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie den Abstand des PKW A zur Markierungslinie zur Zeit t = 2.

    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Zeigen Sie, dass PKW A zur Zeit t = 3 langsamer als PKW B fährt.

    [1 Punkt]

    Winterliche Fahrbahnverhältnisse im Straßenverkehr - Aufgabe A_143
    Weg-Zeit-Funktion
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - September 2020 - kostenlos vorgerechnet
    Bewegungsaufgaben
    Differenzialrechnung
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.5
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4259

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 12. Jänner 2021 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Torre de Collserola - Aufgabe A_296

    Teil c

    Vom Fußpunkt des Torre de Collserola (Fernsehturm in Barcelona) bis zu dessen Aussichtsplattform führt ein Aufzug senkrecht nach oben. In der nachstehenden Abbildung ist die Geschwindigkeit-Zeit-Funktion v bei einer Aufzugsfahrt modellhaft dargestellt.

    Bild
    beispiel_4257_1

     

    Im Zeitintervall [0; 30] gilt für die Geschwindigkeit-Zeit-Funktion v:
    \(v\left( t \right) = - \dfrac{1}{{11250}} \cdot {t^3} + \dfrac{1}{{250}} \cdot {t^2}{\rm{ mit }}0 \le t \le 30\)

    1. Teilaufgabe - Bearbeitungszeit 11:20

    Berechnen Sie die Länge des Weges, der bei dieser Aufzugsfahrt insgesamt zurückgelegt wird.

    [2 Punkte]

    Torre de Collserola - Aufgabe A_296
    Weg-Zeit-Funktion
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Jänner 2021 - kostenlos vorgerechnet
    Integralrechnung
    Bewegungsaufgaben
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.5
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4299

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2016 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Section-Control - Aufgabe_A226

    Section-Control bezeichnet ein System zur Überwachung der Einhaltung von Tempolimits im Straßenverkehr. Dabei wird nicht die Geschwindigkeit an einem bestimmten Punkt gemessen, sondern die mittlere Geschwindigkeit über eine längere Strecke ermittelt.

    Teil b

    Im nachstehenden Weg-Zeit-Diagramm ist die Fahrt eines Fahrzeuges in einem überprüften Bereich dargestellt.

    Bild
    beispiel_4299_1

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Ermitteln Sie die mittlere Geschwindigkeit des Fahrzeugs auf der ersten Weghälfte.
    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Argumentieren Sie, dass die mittlere Geschwindigkeit auf der ersten Weghälfte kleiner als die mittlere Geschwindigkeit auf der zweiten Weghälfte ist.

    [1 Punkt]

    Section-Control - Aufgabe_A226
    Weg-Zeit-Funktion
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2016 - kostenlos vorgerechnet
    Änderungsmaße
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.2
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    Bild
    Illustration Buch mit Cocktail 1050 x 450
    Startseite

    Seitennummerierung

    • 1
    • Vorherige Seite
    Fragen oder Feedback

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Laptop
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH