Headerbar Werbung für Region "nicht-DACH"
Österreichische BHS Matura - 2019.05.08 - BRP & FAfEP & BASOP - 4 Teil B Beispiele
Aufgabe 4330
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Boule - Aufgabe B_444
Boule ist eine Sportart, bei der Kugeln geworfen werden. Ziel ist es, mit den eigenen Kugeln möglichst nah an eine Zielkugel zu gelangen.
Teil a
Peter wirft eine Kugel. Die Flugbahn dieser Kugel kann näherungsweise durch den Graphen der Funktion f beschrieben werden (siehe nachstehende Abbildung).
\(f(x) = - 0,0959 \cdot {x^2} + 0,767 \cdot x + 1,1\)
x, f(x) | Koordinaten in m |
1. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung der Zahl 1,1 in der obigen Funktionsgleichung im gegebenen Sachzusammenhang.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wurfweite w.
[1 Punkt]
Peter möchte, dass der Aufprallwinkel α der Kugel im Intervall [42°; 44°] liegt.
3. Teilaufgabe - Bearbeitungszeit 5:40
Überprüfen Sie mithilfe der Differenzialrechnung, ob der Aufprallwinkel α in diesem Intervall liegt. [1 Punkt]
Banner Werbung für Region DE
Schon den nächsten Urlaub im Süden geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...

Aufgabe 4331
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Boule - Aufgabe B_444
Boule ist eine Sportart, bei der Kugeln geworfen werden. Ziel ist es, mit den eigenen Kugeln möglichst nah an eine Zielkugel zu gelangen.
Teil b
Für eine genauere Analyse eines Boule-Spiels wird mithilfe einer Drohne ein Luftbild aufgenommen.
- A = (2 | 10) ... Auflagepunkt der ersten Kugel
- B = (17 | 6) ... Auflagepunkt der zweiten Kugel
- Z = (4 | 1) ... Auflagepunkt der Zielkugel
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Lange der Strecke BZ.
[1 Punkt]
Während des Spiels bewegt sich die erste Kugel entlang der Strecke AB 3 cm in Richtung B.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Koordinaten der neuen Position des Auflagepunkts der ersten Kugel.
[2 Punkte]
Aufgabe 4332
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Boule - Aufgabe B_444
Boule ist eine Sportart, bei der Kugeln geworfen werden. Ziel ist es, mit den eigenen Kugeln möglichst nah an eine Zielkugel zu gelangen.
Teil c
Die Zeit, die benötigt wird, um sich vor einem Wurf zu konzentrieren, nennt man Konzentrationszeit. Im nachstehenden Boxplot sind die Konzentrationszeiten von Emma bei mehreren Würfen zusammengefasst.
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus dem Boxplot den Interquartilsabstand der Konzentrationszeiten von Emma ab.
[1 Punkt]
Aufgabe 4336
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bahnsteige - Aufgabe B_446
Teil a
Auf dem Bahnhof Linz wird eine Betonkonstruktion zur Überdachung eines Bahnsteigs verwendet. Die nachfolgende Abbildung zeigt eine vereinfachte Darstellung der Betonkonstruktion.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung des Inhalts A der grau markierten Fläche.
A =
[1 Punkt]
Der in der obigen Abbildung dargestellte Graph der Funktion f wird beschrieben durch:
\(f\left( x \right) = \sqrt {x - a} + b{\text{ mit x}} \geqslant {\text{a}}\)
x, f(x) | Koordinaten in m |
a, b | Parameter |
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung die Parameter a und b der Funktion f ab.
- a =
- b =
[1 Punkt]
Aufgabe 4337
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bahnsteige - Aufgabe B_446
Teil b
In der nachstehenden Skizze ist eine Holzkonstruktion zur Überdachung eines Bahnsteigs dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe von \(\overline {AE} ,\,\,\overline {AD} {\text{ und }}\alpha \) eine Formel zur Berechnung von \(\overline {DF} \)
[1 Punkt]
Es gilt: A = (0 | 4), B = (0 | 2,8), α = 104° und β = 123°
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge BC.
[1 Punkt]
Banner Werbung für Region AT
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo und ohne Kreditkarte
Nach der Prüfung genießt du deinen Erfolg

Aufgabe 4344
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lauftraining - Aufgabe B_449
Anna, Beate und Clara bereiten sich auf einen Laufwettbewerb vor. Dabei verfolgen sie unterschiedliche Trainingspläne.
Teil a
Anna und Beate überlegen sich folgende Trainingspläne:
Tag 1 | Tag 2 | Tag 3 | Tag 4 | |
km/Tag | km/Tag | km/Tag |
km/Tag |
|
Anna | 1,5 | 1,65 | 1,815 | |
Beate | 1,5 | 2 | 2,5 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass die Längen der Trainingsstrecken von Anna an den ersten 3 Tagen eine geometrische Folge bilden.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie für diese Folge ein rekursives Bildungsgesetz auf.
[1 Punkt]
Die Längen der Trainingsstrecken von Beate an den ersten 3 Tagen bilden eine arithmetische Folge.
3. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie für diese Folge ein rekursives Bildungsgesetz auf.
[1 Punkt]
4. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie unter Verwendung der jeweiligen Bildungsgesetze die fehlenden Werte in der letzten Spalte der obigen Tabelle.
[1 Punkt]
Aufgabe 4345
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lauftraining - Aufgabe B_449
Anna, Beate und Clara bereiten sich auf einen Laufwettbewerb vor. Dabei verfolgen sie unterschiedliche Trainingspläne.
Teil b
Clara berechnet die Längen ihrer Trainingsstrecken folgendermaßen:
\({c_n} = 2,75 + 0,125 \cdot n\)
n |
Trainingstag |
cn |
Länge der Trainingsstrecke am n-ten Tag in km |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, am wievielten Trainingstag Claras Trainingsstrecke eine Länge von 8 km hat.
[1 Punkt]
Aufgabe 4346
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Studienabschlüsse - Aufgabe B_450
Teil a
Mehrere Personen wurden befragt, warum sie ihr Studium nicht abgeschlossen haben. Zur Auswahl standen folgende 3 Grunde: „Zeitprobleme“, „private Gründe“ und „fachliche Defizite“.
Mehrfachnennungen waren möglich. Die Ergebnisse der Befragung von 76 Personen sind im nachstehenden Venn-Diagramm dargestellt.
- Z ... Menge aller Personen, die Zeitprobleme angegeben haben
- P ... Menge aller Personen, die private Grunde angegeben haben
- F ... Menge aller Personen, die fachliche Defizite angegeben haben
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie die Menge (F ∩ Z) \ P im gegebenen Sachzusammenhang.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, wie viele Personen genau 1 der 3 Gründe angegeben haben.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Kennzeichnen Sie im nachstehenden Venn-Diagramm die Menge derjenigen Personen, die sowohl Zeitprobleme als auch private Grunde als auch fachliche Defizite angegeben haben.
[1 Punkt]
Aufgabe 4347
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Studienabschlüsse - Aufgabe B_450
Teil b
Folgende Tabelle gibt die jeweilige Anzahl der Studienabschlüsse an öffentlichen Universitäten in Österreich in den Jahren 2007 bis 2014 an:
Jahr | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
Anzahl der Studienab- |
22.121 | 23.910 | 27.232 | 27.926 | 31.115 | 34.460 | 37.312 | 34.300 |
Datenquelle: Statistik Austria (Hrsg.): Bildung in Zahlen 2014/15. Tabellenband. Wien: Statistik Austria 2016, S. 320.
Jemand vermutet, dass sich die Anzahl der Studienabschlüsse in Abhängigkeit von der Zeit t näherungsweise durch eine lineare Funktion beschreiben lässt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der Regressionsrechnung eine Gleichung der zugehörigen linearen Funktion f. Wählen Sie t = 0 für das Jahr 2007.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Beurteilen Sie mithilfe des Korrelationskoeffizienten, ob die Regressionsfunktion ein geeignetes Modell darstellt, um die Entwicklung der Anzahl der Studienabschlüsse zu beschreiben.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, mit wie vielen Studienabschlüssen gemäß diesem Modell im Jahr 2020 zu rechnen ist. [1 Punkt]
Banner Werbung für Region AT
maths2mind
Kreditkarte? - Braucht man nicht!
Kostenpflichtige Pakete? Gibt es nicht!
Nach der Prüfung genießt du mit dem gesparten Geld deinen Erfolg

Aufgabe 4348
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Studienabschlüsse - Aufgabe B_450
Teil c
Folgendes Diagramm zeigt den Frauenanteil bei den Studienabschlüssen an öffentlichen Universitäten in Osterreich für zwei verschiedene Studienjahre:
Studienabschlüsse an öffentlichen Universitäten nach Fachrichtungen 2003/04 und 2013/14
1 | insgesamt |
2 | Veterinärmedizin |
3 | Geisteswissenschaften |
4 | individuelles Studium |
5 | Naturwissenschaften |
6 | Bildende und angewandte Kunst |
7 | Musik |
8 | Rechtswissenschaften |
9 | Medizin |
10 | Sozial- und Wirtschaftswissenschaften |
11 | Bodenkultur |
12 | Theologie |
13 | Darstellende Kunst |
14 | Technik |
15 | Montanistik |
Quelle: https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/s…] (adaptiert).
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus dem obigen Diagramm ab, in welchen Fachrichtungen der Frauenanteil im Studienjahr 2013/14 geringer als im Studienjahr 2003/04 war.
[1 Punkt]
Jemand behauptet: „Im Bereich individuelles Studium ist der Frauenanteil in den dargestellten Studienjahren von 19,7 % auf 67,8 % gestiegen. Das heißt, dass 2013/14 viel mehr Frauen als 2003/04 ein individuelles Studium abgeschlossen haben.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie, warum diese Argumentation unzulässig ist. [1 Punkt]