Österreichische BHS Matura - 2021.05.21 - HTL1 - 3 Teil B Beispiele
Aufgabe 4429
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewächshäuser - Aufgabe B_505
Teil a
Auf der Insel Mainau steht ein besonderes Gewächshaus. Die nachstehende Abbildung zeigt die Vorderseite des Gewächshauses in einem Koordinatensystem. Die Vorderseite ist dabei symmetrisch zur y-Achse.
Der Graph der Funktion g ergibt sich durch Verschiebung des Graphen der Funktion f um 7,5 m nach rechts und 5,8 m nach unten.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Rechenzeichen und Zahlen in die dafür vorgesehenen Kästchen ein.
[0 / 1 P.]
\(g\left( x \right) = f\left( {x\fbox{}\,\,\boxed{}} \right)\,\,\boxed{}\,\,\boxed{}\)
Die Funktion f ist gegeben durch:
\(f\left( x \right) = \dfrac{{87}}{5} - \dfrac{{116}}{{1125}} \cdot {x^2}{\text{ mit }}0 \leqslant x \leqslant 7,5\)
x, f(x) |
Koordinaten in m |
An der Stelle x = 7,5 schließt die Tangente an den Graphen von f mit der horizontalen Tangente an den Graphen von g den stumpfen Winkel α ein (siehe obige Abbildung).
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Winkel α.
[0 / 1 P.]
Die in der obigen Abbildung eingezeichneten Graphen der Funktionen f, g und h haben jeweils die gleiche Lange.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Umfang der von der dargestellten Kontur (=äußere Linie eines Körpers) begrenzten Fläche.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4430
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewächshäuser - Aufgabe B_505
Teil b
In der nachstehenden Abbildung ist ein Gewächshaus in Form eines Prismas dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie eine Formel zur Berechnung des Inhalts A der grau markierten Fläche auf. Verwenden Sie dabei die Längen a, b, m und h sowie den Winkel β.
A =
[0 / 1 P.]
Es gilt: a = 2 m, h = 3 m, m = 4 m, β = 132°
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Länge b.
[0 / 1 / 2 P.]
Aufgabe 4431
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flughafen - Aufgabe B_506
Teil a
Auf einem bestimmten Flughafen werden Gepäckstücke mit unterschiedlichen Zielorten aufgegeben. Jedes Gepäckstück hat mit der gleichen Wahrscheinlichkeit p den Zielort Salzburg. Es werden 2 Gepäckstücke unabhängig voneinander zufällig ausgewählt und im Hinblick auf deren jeweiligen Zielort überprüft.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie im nachstehenden Baumdiagramm die fehlenden Wahrscheinlichkeiten in die dafür vorgesehenen Kästchen ein.
[0 / 1 P.]
Die Wahrscheinlichkeit, dass von 2 zufällig ausgewählten Gepäckstücken mindestens 1 nicht den Zielort Salzburg hat, betragt 97,75 %.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit p.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Ereignissen jeweils die zutreffende Wahrscheinlichkeit aus A bis D zu.
[0 / 1 P.]
- Ereignis 1: Von 5 zufällig ausgewählten Gepäckstücken hat keines den Zielort Salzburg.
- Ereignis 2: Von 5 zufällig ausgewählten Gepäckstücken haben alle den Zielort Salzburg.
- Wahrscheinlichkeit 1: \({\left( {1 - p} \right)^5}\)
- Wahrscheinlichkeit 2: \({p^5}\)
- Wahrscheinlichkeit 3: \(1 - {p^5}\)
- Wahrscheinlichkeit 4: \(1 - {\left( {1 - p} \right)^5}\)
Aufgabe 4432
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flughafen - Aufgabe B_506
Teil b
Der Kerosinverbrauch eines bestimmten Flugzeugs auf einer bestimmten Strecke kann als annähernd normalverteilt angenommen werden. Der Erwartungswert betragt μ = 845 L/100 km und die Standardabweichung beträgt σ = 25 L/100 km.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie dasjenige um μ symmetrische Intervall, in dem der Kerosinverbrauch mit einer Wahrscheinlichkeit von 90 % liegt.
[0 / 1 P.]
Nach Reparaturarbeiten soll der Erwartungswert des Kerosinverbrauchs mithilfe eines Konfidenzintervalls neu geschätzt werden. Dabei wird angenommen, dass die Standardabweichung gleich geblieben ist. Nach den Reparaturarbeiten wurde der Kerosinverbrauch in L/100 km von einer Zufallsstichprobe von 10 Flügen auf dieser Strecke gemessen:
844 | 840 | 864 | 820 | 788 | 858 | 832 | 817 | 839 | 796 |
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie das zweiseitige 99-%-Konfidenzintervall für den Erwartungswert des Kerosinverbrauchs nach den Reparaturarbeiten.
[0 / 1 P.]
Aufgabe 4433
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flughafen - Aufgabe B_506
Teil c
In der nachstehenden Abbildung ist modellhaft ein Koffer auf einem Gepäckförderband dargestellt. Der Koffer bewegt sich mit der Geschwindigkeit \(\overrightarrow v = \left( {\begin{array}{*{20}{c}} {1,2} \\ {0,5} \end{array}} \right)\,\,\dfrac{m}{s}\) vom Punkt A zum Punkt B.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie \(\left| {\overrightarrow v } \right|{\text{ in }}\dfrac{m}{{\min }}\)
[0 / 1 P.]
Anschließend bewegt sich der Koffer mit der Geschwindigkeit \(\overrightarrow w = \left( {\begin{array}{*{20}{c}} { - 1} \\ {{y_w}} \end{array}} \right)\dfrac{m}{s}\) vom Punkt B zum Punkt C. Die beiden Vektoren v und w stehen normal aufeinander.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie yw.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4434
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil a
In einem Schlosspark wird ein dreieckiges Blumenbeet angelegt (siehe nebenstehende Abbildung – Maße in m).
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie den nachstehenden Ausdruck durch Eintragen der richtigen Werte in die dafür vorgesehenen Kästchen.
\(s = \sqrt {\boxed{} + \boxed{} - 2 \cdot {{10}^2} \cdot \cos \left( {\boxed{}} \right)} \)
[0 / 1 P.]
Das Blumenbeet soll mit einem Vlies gegen Unkraut abgedeckt werden. Das Abdecken des Blumenbeets kostet pro Quadratmeter € 1,42.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Kosten für das Abdecken des Blumenbeets.
[0 / 1 P.]
Aufgabe 4435
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil b
Ein rechteckiges Blumenbeet mit den Seitenlangen b und h ist in einen Bereich für Rosen und einen Bereich für Tulpen unterteilt. Die Begrenzungslinie zwischen diesen Bereichen kann modellhaft durch den Graphen der Funktion f beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie mithilfe der obigen Abbildung eine Formel zur Berechnung des Inhalts A der grau markierten Fläche auf.
A =
[0 / 1 P.]
f ist eine Polynomfunktion 3. Grades mit
\(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
Folgende Punkte liegen auf dem Graphen von f: (3 | 0,8), (5 | 2,7), (7 | 3,7), (9 | 2,3).
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie mithilfe dieser Punkte die Koeffizienten a, b, c und d.
[0 / 1 P.]
Aufgabe 4436
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil c
Im Schlosspark gibt es ein Labyrinth aus Hecken. Der Weg durch das Labyrinth wird durch Aneinanderreihen der Vektoren
\(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c ,\,\,...\,\,,\overrightarrow h \)
(in alphabetischer Reihenfolge) beschrieben. Dabei beginnt jeder Vektor an der Spitze des vorherigen Vektors. Es gilt:
\(\overrightarrow e = \left( {\begin{array}{*{20}{c}} 0 \\ 3 \end{array}} \right);\,\,\,\overrightarrow f = \left( {\begin{array}{*{20}{c}} { - 2} \\ 0 \end{array}} \right);\,\,\,\overrightarrow g = \left( {\begin{array}{*{20}{c}} 1 \\ 2 \end{array}} \right);\,\,\,\overrightarrow h = \left( {\begin{array}{*{20}{c}} 4 \\ 0 \end{array}} \right)\)
In der nachstehenden Abbildung ist die quadratische Grundfläche des Labyrinths dargestellt. Der Startpunkt A des Weges durch das Labyrinth, die ersten vier Vektoren und der Punkt P sind bereits eingezeichnet.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein.
\(\begin{gathered} {b_x} = \boxed{} \hfill \\ {b_y} = \boxed{} \hfill \\ \end{gathered} \)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Länge des Weges durch das Labyrinth vom Startpunkt A zum Punkt P.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie ausgehend vom Punkt P den Weg durch das Labyrinth durch Einzeichnen der Vektoren \(\overrightarrow e ,\,\,\,\overrightarrow f ,\,\,\,\overrightarrow g {\text{ und }}\overrightarrow h \)
4. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die auf die gegebenen Vektoren nicht zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: Die Vektoren a und c sind Gegenvektoren.
- Aussage 2: Die Vektoren f und g haben den gleichen Betrag.
- Aussage 3: Die Vektoren f und h sind parallel.
- Aussage 4: Die Vektoren d und e haben den gleichen Betrag.
- Aussage 5: Die Vektoren d und e stehen normal aufeinander.
Aufgabe 4437
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil d
Im Schlosspark wird Schilf gepflanzt. In den ersten Wochen nach der Pflanzung wird die Höhe einer bestimmten Pflanze notiert.
Zeit t nach der Pflanzung in Wochen | 1 | 2 | 3 | 4 | 5 | 6 |
Höhe der Pflanze zur Zeit t in cm | 30 | 34 | 39 | 44 | 48 | 52 |
Die Höhe dieser Pflanze soll in Abhängigkeit von der Zeit t durch die lineare Funktion h beschrieben werden.
t | Zeit nach der Pflanzung in Wochen |
h(t) | Höhe der Pflanze zur Zeit t in cm |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion h.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie gemäß diesem Modell die Höhe der Pflanze 20 Wochen nach der Pflanzung.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.