Österreichische BHS Matura - 2019.05.08 - 5 Teil A Beispiele
Aufgabe 4158
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Die Adria-Wien-Pipeline - Aufgabe A_280
Österreich muss einen Großteil seines Erdölbedarfs durch Importe von Rohöl decken. Diese Importe werden vorwiegend über die Adria-Wien-Pipeline durchgeführt, die von Triest nach Wien-Schwechat führt.
Teil a
Die folgende Tabelle gibt die nach Österreich importierten Rohölmengen in den Jahren 2006 bis 2014 an:
Jahr | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
importierte Rohölmenge in Mio. t |
7,7 | 7,6 | 7,9 | 7,4 | 6,8 | 7,3 | 7,4 | 7,8 | 7,5 |
Quelle: https://www.wko.at/branchen/industrie/mineraloelindustrie/jahresberichte.html
[22.11.2018]
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie das arithmetische Mittel und die Standardabweichung der importierten Rohölmengen für diesen Zeitraum in Millionen Tonnen.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4159
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Die Adria-Wien-Pipeline - Aufgabe A_280
Österreich muss einen Großteil seines Erdölbedarfs durch Importe von Rohöl decken. Diese Importe werden vorwiegend über die Adria-Wien-Pipeline durchgeführt, die von Triest nach Wien-Schwechat führt.
Teil b
Modellhaft betrachtet ist die Pipeline ein Drehzylinder mit dem Durchmesser d und der Höhe l. Der Innendurchmesser der Pipeline betragt d = 457,2 mm. Die Lange der Pipeline betragt rund l = 416 km. In der Erdölindustrie wird für das Volumen von Rohöl häufig die Einheit Barrel verwendet. Es gilt: 1 Barrel ≈ 0,159 m3
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie, wie viele Barrel Rohöl die vollständig befüllte Pipeline fasst.
[2 Punkte]
Aufgabe 4160
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Die Adria-Wien-Pipeline - Aufgabe A_280
Österreich muss einen Großteil seines Erdölbedarfs durch Importe von Rohöl decken. Diese Importe werden vorwiegend über die Adria-Wien-Pipeline durchgeführt, die von Triest nach Wien-Schwechat führt.
Teil c
Das Gesamtvolumen an Rohöl, das im Zeitintervall [0; t] einen Kontrollpunkt in der Pipeline passiert, kann näherungsweise durch die Funktion R in Abhängigkeit von der Zeit t modelliert werden. Der Graph der Funktion R ist in der nachstehenden Abbildung dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe des oben dargestellten Graphen eine Gleichung der Funktion R.
[1 Punkt]
Die Durchflussrate D(t) zum Zeitpunkt t ist die momentane Änderungsrate der Funktion R.
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen der Durchflussrate ein.
[1 Punkt]
Aufgabe 4161
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vitamin C - Aufgabe A_281
Teil a
Der Vitamin-C-Gehalt eines Apfels nimmt nach der Ernte exponentiell ab. Alle 4 Wochen nimmt der Vitamin-C-Gehalt um 20 % bezogen auf den Wert zu Beginn dieser 4 Wochen ab. Ein bestimmter Apfel hat bei der Ernte einen Vitamin-C-Gehalt von 18 mg. Der Vitamin-C-Gehalt dieses Apfels in Milligramm soll in Abhängigkeit von der Zeit t in Wochen beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Funktion. Wählen Sie t = 0 für den Zeitpunkt der Ernte.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Vitamin-C-Gehalt dieses Apfels 36 Wochen nach der Ernte.
[1 Punkt]
Aufgabe 4162
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vitamin C - Aufgabe A_281
Teil b
Der Vitamin-C-Gehalt von Tabletten der Sorte Zitruspower ist annähernd normalverteilt mit dem Erwartungswert μ = 100 mg und der Standardabweichung σ = 5 mg.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass der Vitamin-C-Gehalt einer zufällig ausgewählten Tablette zwischen 92 mg und 110 mg liegt.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4163
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vitamin C - Aufgabe A_281
Teil c
Nach der Einnahme einer Vitamin-C-Tablette steigt die Vitamin-C-Konzentration im Blut zunächst an und sinkt danach wieder ab. Die Funktion c beschreibt näherungsweise den zeitlichen Verlauf der Vitamin-C-Konzentration im Blut einer bestimmten Person.
\(c\left( t \right) = 24 \cdot \left( {{e^{ - 0,0195 \cdot t}} - {e^{ - 1,3 \cdot t}}} \right) + 3\)
- t ... Zeit seit der Einnahme der Vitamin-C-Tablette in h
- c(t) ... Vitamin-C-Konzentration im Blut zur Zeit t in Mikrogramm pro Milliliter (μg/ml)
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass die maximale Vitamin-C-Konzentration im Blut der Person gerundet \(25,18\,\,\mu g/ml\) beträgt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie denjenigen Ausdruck an, der die maximale Vitamin-C-Konzentration in mg/L angibt.
[1 aus 5] [1 Punkt]
- Aussage 1: 0,02518 mg/L
- Aussage 2: 25,18 mg/L
- Aussage 3: 25 180 mg/L
- Aussage 4: 0,00002518 mg/L
- Aussage 5: 25 180 000 mg/L
Aufgabe 4164
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Glücksspiel - Aufgabe A_282
Bei einem Glücksspiel werden aus verschiedenen Gefäßen Kugeln zufällig gezogen.
Teil a
Im ersten Gefäß befinden sich insgesamt a Kugeln. 7 dieser Kugeln sind rot, die anderen Kugeln sind weiß. Es wird 1 Kugel aus diesem Gefäß gezogen.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe von a einen Ausdruck zur Berechnung der folgenden Wahrscheinlichkeit: P(„die gezogene Kugel ist weiß“) =
[1 Punkt]
Aus diesem Gefäß mit a Kugeln zieht Elena 1 Kugel und legt diese Kugel anschließend in das Gefäß zurück. Dann zieht sie wieder 1 Kugel.
2. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie das nachstehende Baumdiagramm so, dass es den beschriebenen Sachverhalt wiedergibt.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Die Wahrscheinlichkeit, dass Elena 2-mal eine rote Kugel zieht, beträgt 12,25 %. Berechnen Sie die Anzahl a.
[1 Punkt]
Aufgabe 4165
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Glücksspiel - Aufgabe A_282
Bei einem Glücksspiel werden aus verschiedenen Gefäßen Kugeln zufällig gezogen.
Teil b
Im zweiten Gefäß befinden sich 6 schwarze und 2 blaue Kugeln. Aus diesem Gefäß zieht Susi 1 Kugel und legt diese Kugel anschließend in das Gefäß zurück. Das macht sie insgesamt 5-mal.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass Susi dabei genau 3-mal eine schwarze Kugel zieht.
[1 Punkt]
Aufgabe 4166
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Glücksspiel - Aufgabe A_282
Bei einem Glücksspiel werden aus verschiedenen Gefäßen Kugeln zufällig gezogen.
Teil c
Im dritten Gefäß befinden sich 12 Kugeln. 7 dieser Kugeln sind grün, die anderen Kugeln sind gelb. Aus diesem Gefäß zieht Moritz 1 Kugel und legt diese Kugel anschließend in das Gefäß zurück. Das macht er insgesamt 3-mal.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen so, dass eine korrekte Aussage entsteht.
[Lückentext] [1 Punkt]
- Aussage 1: alle 3 Kugeln sind grün
- Aussage 2: mindestens 1 Kugel grün ist
- Aussage 3: höchstens 1 Kugel grün ist
- Ausdruck 1: \(1 - {\left( {\dfrac{5}{{12}}} \right)^3}\)
- Ausdruck 2: \(1 - {\left( {\dfrac{7}{{12}}} \right)^3}\)
- Ausdruck 3: \({\left( {\dfrac{5}{{12}}} \right)^3}\)
Die Wahrscheinlichkeit, dass ___1___ , ist durch den Ausdruck ___2___gegeben.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4167
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bahnverkehr in Österreich - Aufgabe A_283
Teil a
Eine Bahnfahrt von Wien nach Graz dauert 2 Stunden und 35 Minuten. Die mittlere Reisegeschwindigkeit beträgt dabei rund 81,83 km/h. Im Jahr 2026 soll der Semmering-Basistunnel fertiggestellt werden. Dadurch wird sich die Fahrtstrecke um 13,7 Kilometer und die Fahrtdauer um 50 Minuten verkürzen.
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die mittlere Reisegeschwindigkeit zwischen Wien und Graz für die verkürzte Fahrt.
[2 Punkte]
Aufgabe 4168
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bahnverkehr in Österreich - Aufgabe A_283
Teil b
Die Fahrtstrecke im Semmering-Basistunnel wird 27,3 Kilometer lang sein und eine (als konstant angenommene) Steigung von 0,84 % haben. In der folgenden Berechnung des Höhenunterschieds Δh in Metern auf dieser Fahrtstrecke ist genau ein Fehler passiert:
Steigungswinkel:
\(\eqalign{ & \alpha = \arctan \left( {0,0084} \right) = 0,48127^\circ \cr & \Delta h = \dfrac{{27300{\text{ m}}}}{{\sin \left( \alpha \right)}} = 3\,\,250\,\,114,6{\text{ m}} \cr} \)
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie die Berechnung und das Ergebnis richtig.
[1 Punkt]
Aufgabe 4169
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bahnverkehr in Österreich - Aufgabe A_283
Teil c
Im nachstehenden Diagramm sind die Fahrgastzahlen der Österreichischen Bundesbahnen für die Jahre 2010 bis 2014 dargestellt.
Datenquelle: Agentur für Passagier- und Fahrgastrechte (Hrsg.): Fahrgastrechte-Statistik Bahn 2014, 2016, S. 4.
https://www.apf.gv.at/files/1-apf-Homepage/1g-Publikationen/Fahrgastrec… [22.11.2018].
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Spannweite der angegebenen Fahrgastzahlen in Millionen.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Es wird folgende Berechnung durchgeführt:
\(\dfrac{{235,1 - 209,8}}{{209,8}} \approx 0,12\)
Interpretieren Sie das Ergebnis dieser Berechnung im gegebenen Sachzusammenhang.
[1 Punkt]