Headerbar Werbung für Region "nicht-DACH"
Österreichische BHS Matura - 2021.05.21 - BRP & FAfEP & BASOP - 3 Teil B Beispiele
Aufgabe 4434
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil a
In einem Schlosspark wird ein dreieckiges Blumenbeet angelegt (siehe nebenstehende Abbildung – Maße in m).
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie den nachstehenden Ausdruck durch Eintragen der richtigen Werte in die dafür vorgesehenen Kästchen.
\(s = \sqrt {\boxed{} + \boxed{} - 2 \cdot {{10}^2} \cdot \cos \left( {\boxed{}} \right)} \)
[0 / 1 P.]
Das Blumenbeet soll mit einem Vlies gegen Unkraut abgedeckt werden. Das Abdecken des Blumenbeets kostet pro Quadratmeter € 1,42.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Kosten für das Abdecken des Blumenbeets.
[0 / 1 P.]
Banner Werbung für Region DE
Schon den nächsten Urlaub im Süden geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...

Aufgabe 4435
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil b
Ein rechteckiges Blumenbeet mit den Seitenlangen b und h ist in einen Bereich für Rosen und einen Bereich für Tulpen unterteilt. Die Begrenzungslinie zwischen diesen Bereichen kann modellhaft durch den Graphen der Funktion f beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie mithilfe der obigen Abbildung eine Formel zur Berechnung des Inhalts A der grau markierten Fläche auf.
A =
[0 / 1 P.]
f ist eine Polynomfunktion 3. Grades mit
\(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
Folgende Punkte liegen auf dem Graphen von f: (3 | 0,8), (5 | 2,7), (7 | 3,7), (9 | 2,3).
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie mithilfe dieser Punkte die Koeffizienten a, b, c und d.
[0 / 1 P.]
Aufgabe 4436
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil c
Im Schlosspark gibt es ein Labyrinth aus Hecken. Der Weg durch das Labyrinth wird durch Aneinanderreihen der Vektoren
\(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c ,\,\,...\,\,,\overrightarrow h \)
(in alphabetischer Reihenfolge) beschrieben. Dabei beginnt jeder Vektor an der Spitze des vorherigen Vektors. Es gilt:
\(\overrightarrow e = \left( {\begin{array}{*{20}{c}} 0 \\ 3 \end{array}} \right);\,\,\,\overrightarrow f = \left( {\begin{array}{*{20}{c}} { - 2} \\ 0 \end{array}} \right);\,\,\,\overrightarrow g = \left( {\begin{array}{*{20}{c}} 1 \\ 2 \end{array}} \right);\,\,\,\overrightarrow h = \left( {\begin{array}{*{20}{c}} 4 \\ 0 \end{array}} \right)\)
In der nachstehenden Abbildung ist die quadratische Grundfläche des Labyrinths dargestellt. Der Startpunkt A des Weges durch das Labyrinth, die ersten vier Vektoren und der Punkt P sind bereits eingezeichnet.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein.
\(\begin{gathered} {b_x} = \boxed{} \hfill \\ {b_y} = \boxed{} \hfill \\ \end{gathered} \)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Länge des Weges durch das Labyrinth vom Startpunkt A zum Punkt P.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie ausgehend vom Punkt P den Weg durch das Labyrinth durch Einzeichnen der Vektoren \(\overrightarrow e ,\,\,\,\overrightarrow f ,\,\,\,\overrightarrow g {\text{ und }}\overrightarrow h \)
4. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die auf die gegebenen Vektoren nicht zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: Die Vektoren a und c sind Gegenvektoren.
- Aussage 2: Die Vektoren f und g haben den gleichen Betrag.
- Aussage 3: Die Vektoren f und h sind parallel.
- Aussage 4: Die Vektoren d und e haben den gleichen Betrag.
- Aussage 5: Die Vektoren d und e stehen normal aufeinander.
Aufgabe 4446
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kinderlieder - Aufgabe B_511
Eine Pädagogin fragt die 26 Kinder ihrer Gruppe, ob sie das Kinderlied "Aramsamsam" und ob sie das Kinderlied "Backe, backe Kuchen" kennen.
- 7 Kinder kennen beide Kinderlieder.
- Insgesamt 13 Kinder kennen das Kinderlied Aramsamsam.
- 3 Kinder kennen keines der beiden Kinderlieder.
Teil a
Die Pädagogin wählt 2 verschiedene Kinder aus den 26 Kindern ihrer Gruppe zufällig aus.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass beide Kinder sowohl das Kinderlied "Aramsamsam" als auch das Kinderlied "Backe, backe Kuchen" kennen.
[0 / 1 P.]
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie ein mögliches Ereignis E im gegebenen Sachzusammenhang, dessen Wahrscheinlichkeit mit dem nachstehenden Ausdruck berechnet wird.
\(P\left( E \right) = \dfrac{3}{{26}} \cdot \dfrac{2}{{25}}\)
Aufgabe 4447
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kinderlieder - Aufgabe B_511
Eine Pädagogin fragt die 26 Kinder ihrer Gruppe, ob sie das Kinderlied "Aramsamsam" und ob sie das Kinderlied "Backe, backe Kuchen" kennen.
- 7 Kinder kennen beide Kinderlieder.
- Insgesamt 13 Kinder kennen das Kinderlied Aramsamsam.
- 3 Kinder kennen keines der beiden Kinderlieder.
Teil b
In der nachstehenden Tabelle sollen für diesen Sachverhalt die zugehörigen Prozentsätze für die Gruppe von 26 Kindern eingetragen werden.
kennen genau eines der beiden Kinderlieder | % |
kennen beide Kinderlieder | % |
kennen keines der beiden Kinderlieder | 11,54% |
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie in der obigen Tabelle die beiden fehlenden Zahlen ein.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie das nachstehende Kreisdiagramm so, dass es den durch die Tabelle beschriebenen Sachverhalt wiedergibt.
[0 / 1 P.]
Banner Werbung für Region DE
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 4448
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kinderlieder - Aufgabe B_511
Eine Pädagogin fragt die 26 Kinder ihrer Gruppe, ob sie das Kinderlied "Aramsamsam" und ob sie das Kinderlied "Backe, backe Kuchen" kennen.
- 7 Kinder kennen beide Kinderlieder.
- Insgesamt 13 Kinder kennen das Kinderlied Aramsamsam.
- 3 Kinder kennen keines der beiden Kinderlieder.
Teil c
1. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie das nachstehende Venn-Diagramm durch Eintragen aller Anzahlen in die dafür vorgesehenen Kästchen.
[0 / 1 P.]
G | Menge aller Kinder der Gruppe |
A | Menge der Kinder, die das Kinderlied Aramsamsam kennen |
B | Menge der Kinder, die das Kinderlied Backe, backe Kuchen kennen |
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Anzahl der Elemente der Menge \(\left( {A \cup B} \right)\backslash \left( {A \cap B} \right)\)
[0 / 1 P.]
Mit den Kindern, denen beide Kinderlieder bekannt sind, singt die Pädagogin das bis dahin allen Kindern der Gruppe unbekannte Kinderlied "Twinkle, twinkle, little star".
T | Menge der Kinder, die das Kinderlied "Twinkle, twinkle, little star" mit der Pädagogin singen |
3. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die nicht zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: \(T \subseteq \left( {A \cup B} \right)\)
- Aussage 2: \(T \subseteq \left( {A \cap B} \right)\)
- Aussage 3: \(T \subseteq \left( {G\backslash B} \right)\)
- Aussage 4: \(T{\not \subseteq }\left( {B\backslash A} \right)\)
- Aussage 5: \(T{\not \subseteq }\left( {A\backslash B} \right)\)
Aufgabe 4449
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ressourcen - Aufgabe B_512
Im Zeitraum von 1970 bis 2010 hat der jährliche globale Rohstoffverbrauch von 22 Milliarden Tonnen auf 70 Milliarden Tonnen zugenommen.* Im selben Zeitraum hat sich die Weltbevölkerung auf 7 Milliarden verdoppelt.
* Vgl. http://derstandard.at/2000041471018/Weltweiter-Rohstoffverbrauch-seit-1… [26.11.2020].
Teil a
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie auf Basis dieser Angaben den durchschnittlichen jährlichen Rohstoffverbrauch pro Person im Jahr 1970.
[0 / 1 P.]
Die zeitliche Entwicklung des globalen Rohstoffverbrauchs kann durch eine arithmetische Folge oder durch eine geometrische Folge modelliert werden.
Im Modell A wird das jährliche prozentuelle Wachstum bezogen auf das jeweilige Vorjahr als konstant angenommen.
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie für das Modell A ein explizites Bildungsgesetz für den globalen Rohstoffverbrauch. Wählen Sie n = 1 für das Jahr 1970, d. h., n = 41 entspricht dem Jahr 2010.
[0 / 1 P.]
Im Modell B wird das jährliche absolute Wachstum als konstant angenommen.
3. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie für das Modell B ein rekursives Bildungsgesetz für den globalen Rohstoffverbrauch. Wählen Sie n = 1 für das Jahr 1970, d. h., n = 41 entspricht dem Jahr 2010.
[0 / 1 P.]
Für das Jahr 2050 wird ein jährlicher globaler Rohstoffbedarf von 180 Milliarden Tonnen angenommen.
4. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den fehlenden Exponenten Exp
180 Milliarden Tonnen = 1,8 ∙ 10Exp kg
Exp=
[0 / 1 P.]
Aufgabe 4450
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ressourcen - Aufgabe B_512
Teil b
Die zeitliche Entwicklung des jährlichen globalen Rohstoffverbrauchs kann durch die streng monoton steigende lineare Funktion g oder durch die streng monoton steigende Exponentialfunktion h modelliert werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.
[0 / 1 P.]
Für ____1____ von g und h gilt: ____2____ .
- Lücke 1_1: genau 1 Stelle
- Lücke 1_2: genau 2 Stellen
- Lücke 1_3: mehr als 2 Stellen
- Lücke 2_1: \(g\left( t \right) = h\left( t \right) = 0\)
- Lücke 2_2: \(g'\left( t \right) = h'\left( t \right)\)
- Lücke 3_3: \(g''\left( t \right) = h''\left( t \right)\)
Aufgabe 4451
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ressourcen - Aufgabe B_512
Teil c:
Die zeitliche Entwicklung des jährlichen globalen Rohstoffverbrauchs kann durch verschiedene Polynomfunktionen modelliert werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Aussagen jeweils den entsprechenden Funktionsgraphen aus
A bis D zu.
[0 / 1 P.]
- Aussage 1: Für alle t mit 2010 < t < 2050 gilt: f″(t) > 0
- Aussage 2: Für genau ein t mit 1970 < t < 2050 gilt: f′(t) = 0 und f″(t) < 0
- Graph A:
- Graph B:
- Graph C:
- Graph D:
Banner Werbung für Region AT
maths2mind
Kreditkarte? - Braucht man nicht!
Kostenpflichtige Pakete? Gibt es nicht!
Nach der Prüfung genießt du mit dem gesparten Geld deinen Erfolg
