Österreichische BHS Matura - 2021.05.21 - HTL2 - 3 Teil B Beispiele
Aufgabe 4431
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flughafen - Aufgabe B_506
Teil a
Auf einem bestimmten Flughafen werden Gepäckstücke mit unterschiedlichen Zielorten aufgegeben. Jedes Gepäckstück hat mit der gleichen Wahrscheinlichkeit p den Zielort Salzburg. Es werden 2 Gepäckstücke unabhängig voneinander zufällig ausgewählt und im Hinblick auf deren jeweiligen Zielort überprüft.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie im nachstehenden Baumdiagramm die fehlenden Wahrscheinlichkeiten in die dafür vorgesehenen Kästchen ein.
[0 / 1 P.]
Die Wahrscheinlichkeit, dass von 2 zufällig ausgewählten Gepäckstücken mindestens 1 nicht den Zielort Salzburg hat, betragt 97,75 %.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit p.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Ereignissen jeweils die zutreffende Wahrscheinlichkeit aus A bis D zu.
[0 / 1 P.]
- Ereignis 1: Von 5 zufällig ausgewählten Gepäckstücken hat keines den Zielort Salzburg.
- Ereignis 2: Von 5 zufällig ausgewählten Gepäckstücken haben alle den Zielort Salzburg.
- Wahrscheinlichkeit 1: \({\left( {1 - p} \right)^5}\)
- Wahrscheinlichkeit 2: \({p^5}\)
- Wahrscheinlichkeit 3: \(1 - {p^5}\)
- Wahrscheinlichkeit 4: \(1 - {\left( {1 - p} \right)^5}\)
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4432
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flughafen - Aufgabe B_506
Teil b
Der Kerosinverbrauch eines bestimmten Flugzeugs auf einer bestimmten Strecke kann als annähernd normalverteilt angenommen werden. Der Erwartungswert betragt μ = 845 L/100 km und die Standardabweichung beträgt σ = 25 L/100 km.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie dasjenige um μ symmetrische Intervall, in dem der Kerosinverbrauch mit einer Wahrscheinlichkeit von 90 % liegt.
[0 / 1 P.]
Nach Reparaturarbeiten soll der Erwartungswert des Kerosinverbrauchs mithilfe eines Konfidenzintervalls neu geschätzt werden. Dabei wird angenommen, dass die Standardabweichung gleich geblieben ist. Nach den Reparaturarbeiten wurde der Kerosinverbrauch in L/100 km von einer Zufallsstichprobe von 10 Flügen auf dieser Strecke gemessen:
844 | 840 | 864 | 820 | 788 | 858 | 832 | 817 | 839 | 796 |
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie das zweiseitige 99-%-Konfidenzintervall für den Erwartungswert des Kerosinverbrauchs nach den Reparaturarbeiten.
[0 / 1 P.]
Aufgabe 4433
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flughafen - Aufgabe B_506
Teil c
In der nachstehenden Abbildung ist modellhaft ein Koffer auf einem Gepäckförderband dargestellt. Der Koffer bewegt sich mit der Geschwindigkeit \(\overrightarrow v = \left( {\begin{array}{*{20}{c}} {1,2} \\ {0,5} \end{array}} \right)\,\,\dfrac{m}{s}\) vom Punkt A zum Punkt B.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie \(\left| {\overrightarrow v } \right|{\text{ in }}\dfrac{m}{{\min }}\)
[0 / 1 P.]
Anschließend bewegt sich der Koffer mit der Geschwindigkeit \(\overrightarrow w = \left( {\begin{array}{*{20}{c}} { - 1} \\ {{y_w}} \end{array}} \right)\dfrac{m}{s}\) vom Punkt B zum Punkt C. Die beiden Vektoren v und w stehen normal aufeinander.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie yw.
[0 / 1 P.]
Aufgabe 4438
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Teil a
Bei den Olympischen Sommerspielen 2008 in Peking siegte Usain Bolt im Finale des 100-Meter-Laufes der Männer. Die Silbermedaille ging an Richard Thompson. Die jeweilige Geschwindigkeit der beiden Läufer bei diesem Lauf kann durch die nachstehenden Funktionen modellhaft beschrieben werden.
\(\begin{gathered} {v_B}\left( t \right) = 12,151 \cdot \left( {1 - {e^{ - 0,684 \cdot t}}} \right) \hfill \\ {v_T}\left( t \right) = 12,15 \cdot \left( {1 - {e^{ - 0,601 \cdot t}}} \right) \hfill \\ \end{gathered} \)
t |
Zeit ab dem Start in s |
vB(t) |
Geschwindigkeit von Usain Bolt zur Zeit t in m/s |
vT(t) |
Geschwindigkeit von Richard Thompson zur Zeit t in m/s |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Beschleunigung von Usain Bolt 1 s nach dem Start.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie, was mit dem nachstehenden Ausdruck im gegebenen Sachzusammenhang berechnet wird.
\(\dfrac{1}{{8 - 5}} \cdot \int\limits_5^8 {{v_B}\left( t \right)} \,\,dt\)
Usain Bolt überquerte die Ziellinie 9,69 s nach dem Start.
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, wie weit Richard Thompson von der Ziellinie entfernt war, als Usain Bolt diese überquerte.
[0 / 1 P.]
Aufgabe 4439
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Teil b
Bei den Olympischen Sommerspielen 2008 in Peking siegte Tomasz Majewski im Kugelstoßfinale der Männer. Die Flugbahn der Kugel kann modellhaft durch den Graphen der Funktion h mit
\(h\left( x \right) = a \cdot {x^2} + b \cdot x + c\)
beschrieben werden.
x, h(x) |
Koordinaten der Flugbahn in m |
An der Stelle x = 0 kann die Geschwindigkeit der Kugel durch den Geschwindigkeitsvektor \(\overrightarrow {{v_M}} \) beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Ausdrücke in die dafür vorgesehenen Kästchen ein. Verwenden Sie dabei den Winkel α.
\(\overrightarrow {{v_M}} = \left| {\overrightarrow {{v_M}} } \right| \cdot \left( {\begin{array}{*{20}{c}} {\boxed{}} \\ {\boxed{}} \end{array}} \right)\)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass gilt:
tan(α) = b
[0 / 1 P.]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4440
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Teil c
Bei den Olympischen Sommerspielen 2008 in Peking siegte Tirunesh Dibaba im Finale des 10 000-Meter-Laufes der Frauen. In der nachstehenden Tabelle sind einige Distanzen und die zugehörigen Zwischenzeiten für die erste Hälfte des Laufes angegeben.
Distanz in m | 1.000 | 2.000 | 3.000 | 4.000 | 5.000 |
Zeit in s | 180,5 | 360,2 | 543,8 | 726,6 | 910,0 |
Datenquelle: https://sportsscientists.com/2008/08/beijng-2008-10000-m-women/ [15.12.2020].
Die Zeit soll in Abhängigkeit von der Distanz durch eine lineare Regressionsfunktion beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der Regressionsrechnung eine Gleichung dieser linearen Funktion.
[0 / 1 P.]
Tirunesh Dibaba benötigte für diesen 10 000-Meter-Lauf insgesamt 29 min 54,66 s.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des relativen Fehlers, wenn zur Berechnung der Laufzeit von Tirunesh Dibaba die ermittelte Regressionsfunktion verwendet wird.
[0 / 1 P.]
Aufgabe 4441
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Meerwasser und mehr Wasser - Aufgabe B_509
Teil a
Die Funktion V beschreibt näherungsweise den zeitlichen Verlauf des Wasservolumens eines bestimmten Sees. Dabei wird das Wasservolumen in Kubikmetern und die Zeit t in Tagen angegeben. V erfüllt die folgende Differenzialgleichung:
\(\dfrac{{dV}}{{dt}} = 0,001 \cdot \left( {350 - V} \right){\text{ mit }}V > 0\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie anhand der Differenzialgleichung, für welche Werte von V das Wasservolumen dieses Sees gemäß diesem Modell zunimmt.
[0 / 1 P.]
2 Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die allgemeine Lösung der Differenzialgleichung mithilfe der Methode Trennen der Variablen.
[0 / 1 P.]
Zur Zeit t = 0 betragt das Wasservolumen 150 m3.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die spezielle Lösung der Differenzialgleichung.
[0 / 1 P.]
Aufgabe 4442
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Meerwasser und mehr Wasser - Aufgabe B_509
Teil b
Während eines Regenschauers wird der Wasserstand in einem bestimmten, anfangs leeren zylinderförmigen Gefäß gemessen. Die Funktion h′ beschreibt modellhaft die momentane Änderungsrate des Wasserstands in diesem Gefäß (siehe nachstehende Abbildung).
\(h'\left( t \right) = 1,5 \cdot t \cdot {e^{ - 0,3 \cdot t}}{\text{ mit 0}} \leqslant {\text{t}} \leqslant {\text{15}}\)
t | Zeit in min |
h'(t) |
momentane Änderungsrate des Wasserstands zur Zeit t in mm/min |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie dasjenige Zeitintervall, in dem gemäß diesem Modell die momentane Änderungsrate des Wasserstands mindestens 1 mm/min beträgt.
[0 / 1 P.]
Aufgabe 4443
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Meerwasser und mehr Wasser - Aufgabe B_509
Teil c
Der innerhalb eines Tages schwankende Wasserstand in einem bestimmten Hafenbecken kann näherungsweise durch die Funktion f beschrieben werden. Der niedrigste Wasserstand wird zur Zeit t = 0 erreicht und beträgt 2 m, der höchste Wasserstand beträgt 4 m.
\(f\left( t \right) = a + b \cdot \cos \left( {0,507 \cdot t} \right)\)
t |
Zeit nach dem niedrigsten Wasserstand in h |
f(t) |
Wasserstand zur Zeit t in m |
1. Teilaufgabe - Bearbeitungszeit 11:20
Geben Sie die Parameter a und b der Funktion f an.
[0 / 1 / 2 P.]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4444
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zahlen können auch komplex sein - Aufgabe B_510
Viele Vorgange in der Elektrotechnik können modellhaft mithilfe von komplexen Zahlen beschrieben werden. Dabei wird die imaginäre Einheit mit j bezeichnet.
Teil a
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie in der nachstehenden Abbildung die komplexe Zahl
\({z_1} = 2 \cdot {e^{ - j\dfrac{\pi }{2}}}\)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie in der nachstehenden Abbildung die beiden komplexen Zahlen z2 und z3 ein, die den Realteil –3 und den Betrag 5 haben.
[0 / 1 P.]
Aufgabe 4445
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zahlen können auch komplex sein - Aufgabe B_510
Viele Vorgange in der Elektrotechnik können modellhaft mithilfe von komplexen Zahlen beschrieben werden. Dabei wird die imaginäre Einheit mit j bezeichnet.
Teil b
Zu jeder komplexen Zahl \(z = a + j \cdot b{\text{ mit a}}{\text{,b}} \in \mathbb{R}\) gibt es die konjugiert komplexe Zahl \(\overline z = a - j \cdot b\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie ganz allgemein, dass \(z \cdot \overline z \) eine reelle Zahl ist.
[0 / 1 P.]